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Chapter One 
Propositional Logic and Set Theory  

In this chapter, we study the basic concepts of propositional logic and some part of set theory. In 
the first part, we deal about propositional logic, logical connectives, quantifiers and arguments. 
In the second part, we turn our attention to set theory and discus about description of sets and 

operations of sets.    

Main Objectives of this Chapter 

At the end of this chapter, students will be able to:- 

 Know the basic concepts of mathematical logic. 

 Know methods and procedures in combining the validity of statements. 

 Understand the concept of quantifiers.   

 Know basic facts about argument and validity.  

 Understand the concept of set. 

 Apply rules of operations on sets to find the result. 

 Show set operations using Venn diagrams. 

1.1. Propositional Logic 
Mathematical or symbolic logic is an analytical theory of the art of reasoning whose goal is to 

systematize and codify principles of valid reasoning. It has emerged from a study of the use of 

language in argument and persuasion and is based on the identification and examination of those 

parts of language which are essential for these purposes. It is formal in the sense that it lacks 

reference to meaning. Thereby it achieves versatility: it may be used to judge the correctness of a 

chain of reasoning (in particular, a "mathematical proof") solely on the basis of the form (and not 

the content) of the sequence of statements which make up the chain. There is a variety of 

symbolic logics. We shall be concerned only with that one which encompasses most of the 

deductions of the sort encountered in mathematics. Within the context of logic itself, this is 

"classical" symbolic logic. 

Section objectives: 

After completing this section, students will be able to:- 

 Identify the difference between proposition and sentence. 

 Describe the five logical connectives. 

 Determine the truth values of propositions using the rules of logical connectives. 
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 Construct compound propositions using the five logical connectives. 

 Determine the truth values of compound propositions. 

 Distinguish a given compound proposition is whether tautology or contradiction. 

1.1.1. Definition and examples of propositions 
Consider the following sentences. 

a. 2 is an even number. 
b. A triangle has four sides. 

c. Emperor Menelik ate chicken soup the night after the battle of Adwa. 
d. May God bless you! 
e. Give me that book. 
f. What is your name? 

The first three sentences are declarative sentences. The first one is true and the second one is 
false. The truth value of the third sentence cannot be ascertained because of lack of historical 
records but it is, by its very form, either true or false but not both. On the other hand, the last 

three sentences have not truth value. So they are not declaratives.   

Now we begin by examining proposition, the building blocks of every argument. A proposition 
is a sentence that may be asserted or denied. Proposition in this way are different from questions, 
commands, and exclamations. Neither questions, which can be asked, nor exclamations, which 

can be uttered, can possibly be asserted or denied. Only propositions assert that something is (or 
is not) the case, and therefore only they can be true or false. 

Definition 1.1: A proposition (or statement) is a sentence which has a truth value (either True or False but 

not both).  

The above definition does not mean that we must always know what the truth value is.  For 

example, the sentence “The 1000th digit in the decimal expansion of 𝜋 is 7” is a proposition, but 
it may be necessary to find this information in a Web site on the Internet to determine whether 

this statement is true. Indeed, for a sentence to be a proposition (or a statement), it is not a 
requirement that we be able to determine its truth value.  

Remark: Every proposition has a truth value, namely true (denoted by 𝑻) or false (denoted by 

𝑭). 

1.1.2. Logical connectives 

In mathematical discourse and elsewhere one constantly encounters declarative sentences which 
have been formed by modifying a sentence with the word “not” or by connecting sentences with 

the words “and”, “or”, “if . . . then (or implies)”, and “if and only if”. These five words or 

combinations of words are called propositional connectives.    

Note: Letters such as 𝑝, 𝑞, 𝑟, 𝑠 etc. are usually used to denote actual propositions. 
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Conjunction 

When two propositions are joined with the connective “and,” the proposition formed is a logical 

conjunction. “and” is denoted by “ ”.  So, the logical conjunction of two propositions, 𝑝 and 𝑞, is 

written: 
  𝑝 ∧ 𝑞,      read as “𝑝 and 𝑞,”  or “𝑝 conjunction 𝑞”.    

p and q are called the components of the conjunction. 𝑝 ∧ 𝑞 is true if and only if 𝑝 is true and 𝑞 is 
true. 

 

The truth table for conjunction is given as follows: 

𝒑 𝒒 𝒑 ∧ 𝑞 

𝑻 

𝑻 

𝑭 

𝑭 

𝑻 

𝑭 

𝑻 

𝑭 

𝑻 

𝑭 

𝑭 

𝑭 

Example 1.1: Consider the following propositions:  

𝑝: 3 is an odd number. (True) 

𝑞: 27 is a prime number. (False) 

𝑟: Addis Ababa is the capital city of Ethiopia. (True) 

a. 𝑝 ∧ 𝑞: 3 is an odd number and 27 is a prime number. (False) 

b. 𝑝 ∧ 𝑟: 3 is an odd number and Addis Ababa is the capital city of Ethiopia. (True) 

Disjunction 

When two propositions are joined with the connective “or,” the proposition formed is called a logical 

disjunction.  “or”  is denoted by “ ”.  So, the logical disjunction of two propositions, 𝑝 and 𝑞, is written: 
   𝑝 ∨ 𝑞   read as “𝑝 or 𝑞”  or “𝑝 disjunction 𝑞.”    

𝑝 ∨ 𝑞 is false if and only if  both 𝑝 and 𝑞 are false. 

The truth table for disjunction is given as follows:   

𝒑 𝒒 𝒑 ∨ 𝑞 

𝑻 

𝑻 

𝑭 

𝑭 

𝑻 

𝑭 

𝑻 

𝑭 

𝑻 

𝑻 

𝑻 

𝑭 
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Example 1.2: Consider the following propositions:  

𝑝: 3 is an odd number. (True) 

𝑞: 27 is a prime number. (False) 

𝑠: Nairobi is the capital city of Ethiopia. (False) 

a. 𝑝 ∨ 𝑞: 3 is an odd number or 27 is a prime number. (True) 

b. p ∨ r: 27 is a prime number or Nairobi is the capital city of Ethiopia. (False) 

Note: The use of “or” in propositional logic is rather different from its normal use in the English 

language. For example, if Solomon says, “I will go to the football match in the afternoon or I 
will go to the cinema in the afternoon,” he means he will do one thing or the other, but not both.  
Here “or” is used in the exclusive sense.  But in propositional logic, “or” is used in the inclusive 
sense; that is, we allow Solomon the possibility of doing both things without him being 

inconsistent.  

Implication  

When two propositions are joined with the connective “implies,” the proposition formed is called a 

logical implication. “implies” is denoted by “ .” So, the logical implication of two propositions, 𝑝 and 

𝑞, is written: 
                   𝑝 ⟹ 𝑞    read as “𝑝 implies 𝑞.” 

The function of the connective “implies” between two propositions is the same as the use of “If … then 

…” Thus 𝑝 ⟹ 𝑞 can be read as “if 𝑝, then 𝑞.” 

𝑝 ⟹ 𝑞 is false if and only if 𝑝 is true and 𝑞 is false. 

This form of a proposition is common in mathematics. The proposition 𝑝 is called the hypothesis 

or the antecedent of the conditional proposition 𝑝 ⟹ 𝑞 while 𝑞 is called its conclusion or the 

consequent. 
The following is the truth table for implication. 

𝑝 𝒒 𝒑 ⟹ 𝑞 

𝑻 

𝑻 

𝑭 

𝑭 

𝑻 

𝑭 

𝑻 

𝑭 

𝑻 

𝑭 

𝑻 

𝑻 

Examples 1.3: Consider the following propositions:  

                𝑝: 3 is an odd number. (True) 

                𝑞: 27 is a prime number. (False) 

                𝑟: Addis Ababa is the capital city of Ethiopia. (True) 

     𝑝 ⟹ 𝑞: If 3 is an odd number, then 27 is prime. (False) 

     𝑝 ⟹ 𝑟: If 3 is an odd number, then Addis Ababa is the capital city of Ethiopia. (True) 
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We have already mentioned that the implication 𝑝 ⟹ 𝑞 can be expressed as both “If 𝑝, then 𝑞” 

and “𝑝 implies 𝑞.” There are various ways of expressing the proposition 𝑝 ⟹ 𝑞, namely: 

                   If 𝑝, then 𝑞. 

                   𝑞 if 𝑝. 

                   𝑝 implies 𝑞. 

 𝑝 only if 𝑞. 

 𝑝 is sufficient for 𝑞. 

        𝑞 is necessary for 𝑝 

Bi-implication  

When two propositions are joined with the connective “bi-implication,” the proposition formed is called 

a logical bi-implication or a logical equivalence. A bi-implication is denoted by “ ”.  So the logical bi-

implication of two propositions, 𝑝 and 𝑞, is written: 
𝑝 ⟺ 𝑞. 

𝑝 ⟺ 𝑞 is false if and only if 𝑝 and 𝑞 have different truth values. 

The truth table for bi-implication is given by:  

𝒑 𝒒 𝒑 ⟺ 𝑞 

𝑻 

𝑻 

𝑭 

𝑭 

𝑻 

𝑭 

𝑻 

𝑭 

𝑻 

𝑭 

𝑭 

𝑻 

Examples 1.4: 

a. Let 𝑝: 2 is greater than 3. (False) 

             𝑞: 5 is greater than 4. (True) 
Then  

             𝑝 ⟺ 𝑞: 2 is greater than 3 if and only if 5 is greater than 4. (False) 
b. Consider the following propositions: 

      𝑝: 3 is an odd number. (True) 

     𝑞: 2 is a prime number. (True) 

                 𝑝 ⟺ 𝑞:  3 is an odd number if and only if 2 is a prime number. (True) 

There are various ways of stating the proposition 𝑝 ⟺ 𝑞. 

                   𝑝 if and only if 𝑞 (also written as 𝑝 iff 𝑞), 

                   𝑝 implies 𝑞 and 𝑞 implies 𝑝, 

                   𝑝 is necessary and sufficient for 𝑞 

                   𝑞 is necessary and sufficient for 𝑝 

                   𝑝 is equivalent to 𝑞 
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Negation  

Given any proposition 𝑝, we can form the proposition 𝑝 called the negation of 𝑝. The truth value of 𝑝 

is 𝐹 if 𝑝 is 𝑇 and 𝑇 if 𝑝 is 𝐹. 

We can describe the relation between 𝑝 and 𝑝 as follows. 

𝒑 𝑝 

𝐓 

𝐅 

𝐅 

𝐓 

Example 1.5: Let 𝑝: Addis Ababa is the capital city of Ethiopia. (True) 

                           𝑝: Addis Ababa is not the capital city of Ethiopia. (False)  

Exercises  
1. Which of the following sentences are propositions? For those that are, indicate the truth 

value. 
a. 123 is a prime number.  

b. 0 is an even number. 

c. 𝑥ଶ − 4 = 0. 

d. Multiply 5𝑥 + 2 by 3. 
e. What an impossible question! 

2. State the negation of each of the following statements. 

a. √2 is a rational number. 
b. 0 is not a negative integer. 
c. 111 is a prime number. 

3. Let 𝑝: 15 is an odd number.  

      𝑞: 21 is a prime number. 
State each of the following in words, and determine the truth value of each. 

a. 𝑝 ∨ 𝑞. 

b. 𝑝 ∧ 𝑞.  

c. 𝑝 ∨ 𝑞. 

d. 𝑝 ∧ 𝑞. 

e. 𝑝 ⟹ 𝑞. 

f. 𝑞 ⟹ 𝑝. 

a. 𝑝 ⟹ 𝑞. 

g. 𝑞 ⟹ 𝑝. 
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4. Complete the following truth table. 

𝒑 𝒒 𝒒 𝒑 ∧ 𝒒 

𝑻 

𝑻 

𝑭 

𝑭 

𝑻 

𝑭 

𝑻 

𝑭 

 
 
 

 

 
 
 

 
 

 

1.1.3. Compound (or complex) propositions 

So far, what we have done is simply to define the logical connectives, and express them through 
algebraic symbols. Now we shall learn how to form propositions involving more than one 
connective, and how to determine the truth values of such propositions. 

Definition 1.2: The proposition formed by joining two or more proposition by connective(s) is called a 
compound statement. 

Note: We must be careful to insert the brackets in proper places, just as we do in arithmetic. For 

example, the expression  𝑝 ⟹ 𝑞 ∧ 𝑟 will be meaningless unless we know which connective 

should apply first. It could mean (𝑝 ⟹ 𝑞) ∧ 𝑟 or 𝑝 ⟹ (𝑞 ∧ 𝑟), which are very different 
propositions. The truth value of such complicated propositions is determined by systematic 
applications of the rules for the connectives. 

The possible truth values of a proposition are often listed in a table, called a truth table. If 𝑝 and 𝑞 are 

propositions, then there are four possible combinations of truth values for 𝑝 and 𝑞. That is, 𝑇𝑇, 𝑇𝐹, 𝐹𝑇 

and 𝐹𝐹. If a third proposition 𝑟 is involved, then there are eight possible combinations of truth values for 

𝑝,𝑞 and 𝑟. In general, a truth table involving “𝑛” propositions 𝑝1, 𝑝2,…, 𝑝𝑛 contains 2𝑛 possible 

combinations of truth values for these propositions and a truth table showing these combinations would 

have 𝑛 columns and 2𝑛 rows. So, we use truth tables to determine the truth value of a compound 
proposition based on the truth value of its constituent component propositions.  

Examples 1.6: 

a. Suppose 𝑝  and 𝑟 are true and 𝑞 and 𝑠 are false. 

           What is the truth value of (𝑝 ∧ 𝑞) ⟹ (𝑟 ∨ 𝑠)? 

i. Since 𝑝 is true and 𝑞 is false, 𝑝 ∧ 𝑞 is false.  

ii. Since 𝑟 is true and 𝑠 is false, 𝑟 ∨ 𝑠 is true. 

iii. Thus by applying the rule of implication, we get that (𝑝 ∧ 𝑞) ⟹ (𝑟 ∨ 𝑠) is true. 
b. Suppose that a compound proposition is symbolized by  

(𝑝 ∨ 𝑞) ⟹ (𝑟 ⟺ s) 
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and that the truth values of 𝑝, 𝑞, 𝑟, and 𝑠 are 𝑇, 𝐹, 𝐹, and 𝑇, respectively. Then the truth value of 

𝑝 ∨ 𝑞 is 𝑇, that of  s is , that of 𝑟 ⟺ s is 𝑇. So the truth value of (𝑝 ∨ 𝑞) ⟹ (𝑟 ⟺ s) is 𝑇.  

Remark: When dealing with compound propositions, we shall adopt the following convention 

on the use of parenthesis. Whenever “ ” or “ ” occur with “ ” or “ ”, we shall assume that “

” or “ ” is applied first, and then “ ” or “ ” is then applied. For example, 

                                      𝑝 ∧ 𝑞 ⟹ 𝑟 means (𝑝 ∧ 𝑞) ⟹ 𝑟 

                                      𝑝 ∨ 𝑞 ⟺ 𝑟 means (𝑝 ∨ 𝑞) ⟺ 𝑟 

                                    𝑞 ⟹ 𝑝 means (𝑞) ⟹ (𝑝) 

                                   𝑞 ⟹ 𝑝 ⟺ 𝑟 means ((𝑞) ⟹ 𝑝) ⟺ 𝑟 

However, it is always advisable to use brackets to indicate the order of the desired operations.  . 

Definition 1.3: Two compound propositions 𝑃 and 𝑄 are said to be equivalent if they have the same truth 

value for all possible combinations of truth values for the component propositions occurring in both 𝑃 and 

𝑄. In this case we write 𝑃 ≡ 𝑄. 

Example 1.7:   Let 𝑃: 𝑝 ⟹ 𝑞. 

         Q:(p ∧ q) 

𝒑 𝒒 𝑝 𝑞 𝒑 ⟹ 𝑞 𝑞 ⟹ p 

𝑻 

𝑻 

𝑭 

𝑭 

𝑻 

𝑭 

𝑻 

𝑭 

𝑭 

𝑭 

𝑻 

𝑻 

𝑭 

𝑻 

𝑭 

𝑻 

𝑻 

𝑭 

𝑻 

𝑻 

𝑻 

𝑭 

𝑻 

𝑻 

Then, 𝑃 is equivalent to 𝑄, since columns 5 and 6 of the above table are identical. 

Example 1.8:   Let 𝑃: 𝑝 ⟹ 𝑞.   

                 𝑄:𝑝 ⟹ 𝑞. 

Then 

𝒑 𝒒 𝑝 𝑞 𝒑 ⟹ 𝑞 𝒑 ⟹ 𝒒 

𝑻 

𝑻 

𝑭 

𝑭 

𝑻 

𝑭 

𝑻 

𝑭 

𝑭 

𝑭 

𝑻 

𝑻 

𝑭 

𝑻 

𝑭 

𝑻 

𝑻 

𝑭 

𝑻 

𝑻 

𝑻 

𝑻 

𝑭 

𝑻 

Looking at columns 5 and 6 of the table we see that they are not identical. Thus 𝑃 ≢ 𝑄. 

It is useful at this point to mention the non-equivalence of certain conditional propositions. 

Given the conditional 𝑝 ⟹ 𝑞, we give the related conditional propositions:- 

                      𝑞 ⟹ 𝑝:                 Converse of 𝑝 ⟹ 𝑞 
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                    𝑝 ⟹ 𝑞:             Inverse of  𝑝 ⟹ 𝑞 

                    𝑞 ⟹ 𝑝:            Contrapositive of  𝑝 ⟹ 𝑞 

As we observed from example 1.7, the conditional 𝑝 ⟹ 𝑞 and its contrapositve 𝑞 ⟹ 𝑝 are 

equivalent. On the other hand,  𝑝 ⟹ 𝑞 ≢ 𝑞 ⟹ 𝑝 and p ⟹ q ≢ q ⟹ p. 

Do not confuse the contrapositive and the converse of the conditional proposition. Here is 

the difference: 

Converse: The hypothesis of a converse statement is the conclusion of the conditional statement 
and the conclusion of the converse statement is the hypothesis of the conditional statement.   

Contrapositive: The hypothesis of a contrapositive statement is the negation of conclusion of 
the conditional statement and the conclusion of the contrapositive statement is the negation of 

hypothesis of the conditional statement.  

Example 1.9: 
a. If Kidist lives in Addis Ababa, then she lives in Ethiopia. 

Converse: If Kidist lives in Ethiopia, then she lives in Addis Ababa. 
Contrapositive: If Kidist does not live in Ethiopia, then she does not live in Addis 

Ababa. 
Inverse: If Kidist does not live in Addis Ababa, then she does not live in Ethiopia. 

b. If it is morning, then the sun is in the east. 

Converse: If the sun is in the east, then it is morning. 
Contrapositive: If the sun is not in the east, then it is not morning. 
Inverse: If it is not morning, then the sun is not the east.  

Propositions, under the relation of logical equivalence, satisfy various laws or identities, which 
are listed below.  

1. Idempotent Laws 

a. 𝑝 ≡ 𝑝 ∨ 𝑝. 

b. 𝑝 ≡ 𝑝 ∧ 𝑝. 
2. Commutative Laws 

a. p ∧ q ≡ q ∧ p. 

b. p ∨ q ≡ q ∨ p. 
3. Associative Laws 

a. 𝑝 ∧ (𝑞 ∧ 𝑟) ≡ (𝑝 ∧ 𝑞) ∧ 𝑟. 

b. 𝑝 ∨ (𝑞 ∨ 𝑟) ≡ (𝑝 ∨ 𝑞) ∨ 𝑟. 
4. Distributive Laws 

a. 𝑝 ∨ (𝑞 ∧ 𝑟) ≡ (𝑝 ∨ 𝑞) ∧ (𝑝 ∨ 𝑟). 

b. 𝑝 ∧ (𝑞 ∨ 𝑟) ≡ (𝑝 ∧ 𝑞) ∨ (𝑝 ∧ 𝑟). 

5. De Morgan’s Laws 

a. (𝑝 ∧ 𝑞) ≡ 𝑝 ∨ 𝑞. 
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b. (𝑝 ∨ 𝑞) ≡ 𝑝 ∧ 𝑞 

6. Law of Contrapositive 

𝑝 ⟹ 𝑞 ≡ 𝑞 ⟹ 𝑝 
7. Complement Law 

(𝑝) ≡ 𝑝. 

1.1.4. Tautology and contradiction 

Definition: A compound proposition is a tautology if it is always true regardless of the truth values of its 
component propositions. If, on the other hand, a compound proposition is always false regardless of its 

component propositions, we say that such a proposition is a contradiction. 

Examples 1.10: 

a. Suppose 𝑝 is any proposition. Consider the compound propositions 𝑝 ∨ 𝑝 and 𝑝 ∧ 𝑝.  

𝒑 𝑝 𝒑 ∨ 𝑝 𝒑 ∧ 𝑝 

𝐓 

𝐅 

𝐅 

𝐓 

𝑻 

𝑻 

𝑭 

𝑭 

                    Observe that 𝑝 ∨ 𝑝 is a tautology while 𝑝 ∧ 𝑝 is a contradiction. 

b. For any propositions 𝑝 and 𝑞. Consider the compound proposition 𝑝 ⟹ (𝑞 ⟹ 𝑝).  Let us 

make a truth table and study the situation. 

𝒑 𝒒 𝒒 ⟹ 𝑝 𝒑 ⟹ (𝑞 ⟹ 𝑝) 

𝑻 

𝑻 

𝑭 

𝑭 

𝑻 

𝑭 

𝑻 

𝑭 

𝑻 

𝑻 

𝑭 

𝑻 

T 
T 
T 

T 

We have exhibited all the possibilities and we see that for all truth values of the constituent 

propositions, the proposition 𝑝 ⟹ (𝑞 ⟹ 𝑝) is always true. Thus, 𝑝 ⟹ (𝑞 ⟹ 𝑝) is a tautology. 

c. The truth table for the compound proposition (𝑝 ⟹ 𝑞) ⟺ (𝑝 ∧ 𝑞). 

𝒑 𝒒 𝑞 𝒑 ∧ 𝑞 𝒑 ⟹ 𝑞 (𝑝 ⟹ 𝑞) ⟺ (𝑝 ∧ 𝑞) 

𝑻 

𝑻 

𝑭 

𝑭 

𝑻 

𝑭 

𝑻 

𝑭 

𝑭 

𝑻 

𝑭 

𝑻 

𝑭 

𝑻 

𝑭 

𝑭 

𝑻 

𝑭 

𝑻 

𝑻 

𝑭 

𝑭 

𝑭 

𝑭 
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In example 1.10(c), the given compound proposition has a truth value 𝐹 for every possible 

combination of assignments of truth values for the component propositions 𝑝 and 𝑞. Thus 
(𝑝 ⟹ 𝑞) ⟺ (𝑝 ∧ 𝑞) is a contradiction.  

Remark: 

1. In a truth table, if a proposition is a tautology, then every line in its column has 𝑇 as its 

entry; if a proposition is a contradiction, every line in its column has 𝐹 as its entry. 

2. Two compound propositions 𝑃 and 𝑄 are equivalent if and only if “𝑃 ⟺ 𝑄” is a 
tautology. 

Exercises  

1. For statements 𝑝, 𝑞 and 𝑟, use a truth table to show that each of the following pairs of 
statements is logically equivalent. 

a. (𝑝 ∧ 𝑞) ⟺ 𝑝 and 𝑝 ⟹ 𝑞. 

b. 𝑝 ⟹ (𝑞 ∨ 𝑟) and 𝑞 ⟹ (𝑝 ∨ 𝑟). 

c. (𝑝 ∨ 𝑞) ⟹ 𝑟 and (𝑝 ⟹ 𝑞) ∧ (𝑞 ⟹ 𝑟). 

d.  𝑝 ⟹ (𝑞 ∨ 𝑟) and (𝑟) ⟹ (𝑝 ⟹ 𝑞). 

e. 𝑝 ⟹ (𝑞 ∨ 𝑟) and ((𝑟) ∧ 𝑝) ⟹ 𝑞.  

2. For statements 𝑝, 𝑞, and 𝑟, show that the following compound statements are tautology. 

a. 𝑝 ⟹ (𝑝 ∨ 𝑞). 

b. (𝑝 ∧ (𝑝 ⟹ 𝑞)) ⟹ 𝑞. 

c. ൫(𝑝 ⟹ 𝑞) ∧ (𝑞 ⟹ 𝑟)൯ ⟹ (𝑝 ⟹ 𝑟). 

3. For statements 𝑝 and 𝑞, show that (𝑝 ∧ 𝑞) ∧ (𝑝 ∧ 𝑞) is a contradiction. 

4. Write the contrapositive and the converse of the following conditional statements. 
a. If it is cold, then the lake is frozen. 
b. If Solomon is healthy, then he is happy. 

c. If it rains, Tigist does not take a walk.    

5. Let 𝑝 and 𝑞 be statements. Which of the following implies that 𝑝 ∨ 𝑞 is false? 

a. 𝑝 ∨ 𝑞 is false. 

b. 𝑝 ∨ 𝑞 is true. 

c. 𝑝 ∧ 𝑞 is true. 

d. 𝑝 ⟹ 𝑞 is true. 

e. 𝑝 ∧ 𝑞 is false. 

6. Suppose that the statements 𝑝, 𝑞, 𝑟, and 𝑠 are assigned the truth values 𝑇, 𝐹, 𝐹, and 𝑇, 
respectively. Find the truth value of each of the following statements. 

a. (𝑝 ∨ 𝑞) ∨ 𝑟. 

b. 𝑝 ∨ (𝑞 ∨ 𝑟). 

c. 𝑟 ⟹ (𝑠 ∧ 𝑝). 

d. 𝑝 ⟹ (𝑟 ⟹ 𝑠). 

e. 𝑝 ⟹ (𝑟 ∨ 𝑠). 

f. (𝑝 ∨ 𝑟) ⟺ (𝑟 ∧ 𝑠). 

g. (𝑠 ⟺ 𝑝) ⟹ (𝑝 ∨ 𝑠). 

h. (𝑞 ∧ 𝑠) ⟹ (𝑝 ⟺ 𝑠). 

i. (𝑟 ∧ 𝑠) ⟹ (𝑝 ⟹ (𝑞 ∨ 𝑠)). 

j. (𝑝 ∨ 𝑞) ∨ 𝑟 ⟹ (𝑠 ∧ 𝑠). 

7. Suppose the value of 𝑝 ⟹ 𝑞 is 𝑇; what can be said about the value of 𝑝 ∧ 𝑞 ⟺ 𝑝 ∨ 𝑞? 
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8. a.  Suppose the value of 𝑝 ⟺ 𝑞 is 𝑇; what can be said about the values of 𝑝 ⟺ 𝑞 and 

𝑝 ⟺ 𝑞? 

b.  Suppose the value of 𝑝 ⟺ 𝑞 is 𝐹; what can be said about the values of 𝑝 ⟺ 𝑞 and 

𝑝 ⟺ 𝑞? 

9. Construct the truth table for each of the following statements. 

a. 𝑝 ⟹ (𝑝 ⟹ 𝑞). 

b. (𝑝 ∨ 𝑞) ⟺ (𝑞 ∨ 𝑝). 

c. 𝑝 ⟹ (𝑞 ∧ 𝑟). 

d. (𝑝 ⟹ 𝑞) ⟺ (𝑝 ∨ 𝑞). 

e. ൫p ⟹ (q ∧ r)൯ ∨ (ℸp ∧ q). 

f. (𝑝 ∧ 𝑞) ⟹ ((𝑞 ∧ 𝑞) ⟹ (𝑟 ∧ 𝑞)). 
10. For each of the following determine whether the information given is sufficient to decide 

the truth value of the statement. If the information is enough, state the truth value. If it is 
insufficient, show that both truth values are possible. 

a. (𝑝 ⟹ 𝑞) ⟹ 𝑟, where 𝑟 = 𝑇. 

b. 𝑝 ∧ (𝑞 ⟹ 𝑟), where 𝑞 ⟹ 𝑟 = 𝑇. 

c. 𝑝 ∨ (𝑞 ⟹ 𝑟), where 𝑞 ⟹ 𝑟 = 𝑇. 

d. (𝑝 ∨ 𝑞) ⟺ (𝑝 ∧ 𝑞), where 𝑝 ∨ 𝑞 = 𝑇. 

e. (𝑝 ⟹ 𝑞) ⟹ (𝑞 ⟹ 𝑝), where 𝑞 = 𝑇. 

f. (𝑝 ∧ 𝑞) ⟹ (𝑝 ∨ 𝑠), where 𝑝 = 𝑇 and 𝑠 = 𝐹. 

 

 

1.2. Open propositions and quantifiers 
In mathematics, one frequently comes across sentences that involve a variable. For example, 

𝑥ଶ + 2𝑥 − 3 = 0 is one such. The truth value of this statement depends on the value we assign 

for the variable 𝑥. For example, if 𝑥 = 1, then this sentence is true, whereas if 𝑥 = −1, then the 
sentence is false.  

Section objectives: 

After completing this section, students will be able to:-  

 Define open proposition. 

 Analyze the difference between proposition and open proposition. 

 Differentiate the two types of quantifiers. 

 Convert open propositions into propositions using quantifiers. 

 Determine the truth value of a quantified proposition. 

 Convert a quantified proposition into words and vise versa. 

 Explain the relationship between existential and universal quantifiers. 

 Analyze quantifiers occurring in combinations.   
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Definition 1.4: An open statement (also called a predicate) is a sentence that contains one or more 

variables and whose truth value depends on the values assigned for the variables. We represent an open 

statement by a capital letter followed by the variable(s) in parenthesis, e.g., 𝑃(𝑥), 𝑄(𝑥) etc. 

Example 1.11: Here are some open propositions: 

a. 𝑥 is the day before Sunday. 

b. 𝑦 is a city in Africa.   

c. 𝑥 is greater than 𝑦. 

d. 𝑥 + 4 = −9. 
It is clear that each one of these examples involves variables, but is not a proposition as we 
cannot assign a truth value to it. However, if individuals are substituted for the variables, then 
each one of them is a proposition or statement. For example, we may have the following.  

a.  Monday is the day before Sunday. 
b. London is a city in Africa. 
c. 5 is greater than 9. 

d. –13 + 4= –9   

Remark 
The collection of all allowable values for the variable in an open sentence is called the universal 

set (the universe of discourse) and denoted by 𝑼. 

Definition 1.5: Two open proposition 𝑃(𝑥) and 𝑄(𝑥) are said to be equivalent if and only if  

𝑃(𝑎) = 𝑄(𝑎) for all individual 𝑎. Note that if the universe 𝑈 is specified, then 𝑃(𝑥) and 𝑄(𝑥) are 

equivalent if and only if 𝑃(𝑎) = 𝑄(𝑎) for all 𝑎 ∈ 𝑈. 

Example 1.12: Let 𝑃(𝑥): 𝑥ଶ − 1 = 0. 

           𝑄(𝑥): |𝑥| ≥ 1. 

Let 𝑈 = {−1, −
ଵ

ଶ
, 0,1}. 

Then for all 𝑎 ∈ 𝑈; 𝑃(𝑎) and 𝑄(𝑎) have the same truth value. 

𝑃(−1): (−1)ଶ − 1 = 0       (𝑇)               𝑄(−1): |−1| ≥ 1      (𝑇) 

𝑃 ቀ−
ଵ

ଶ
ቁ : (−

ଵ

ଶ
)ଶ − 1 = 0    (𝐹)                𝑄 ቀ−

ଵ

ଶ
ቁ : ቚ−

ଵ

ଶ
ቚ ≥ 1    (𝐹) 

𝑃(0): 0 − 1 = 0                  (𝐹)               𝑄(0): |0| ≥ 1             (𝐹) 

𝑃(1): 1 − 1 = 0                 (𝑇)               𝑄(1): |1| ≥ 1              (𝑇) 

Therefore 𝑃(𝑎) = 𝑄(𝑎) for all 𝑎 ∈ 𝑈. 

Definition 1.6: Let 𝑈 be the universal set. An open proposition 𝑃(𝑥) is a tautology if and only if 𝑃(𝑎) is 

always true for all values of 𝑎 ∈ 𝑈.  
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Example 1.13: The open proposition 𝑃(𝑥): 𝑥ଶ ≥ 0 is a tautology. 

As we have observed in example 1.11, an open proposition can be converted into a proposition 
by substituting the individuals for the variables. However, there are other ways that an open 
proposition can be converted into a proposition, namely by a method called quantification. Let 

𝑃(𝑥) be an open proposition over the domain 𝑆. Adding the phrase “For every 𝑥 ∈ 𝑆” to 𝑃(𝑥) or 

“For some 𝑥 ∈ 𝑆” to 𝑃(𝑥) produces a statement called a quantified statement.     

Consider the following open propositions with universe . 

a. 𝑅(𝑥): 𝑥ଶ ≥ 0 . 

b. 𝑃(𝑥): (𝑥 + 2)(𝑥 − 3) = 0. 

c. 𝑄(𝑥): 𝑥ଶ < 0. 

Then 𝑅(𝑥) is always true for each 𝑥 ∈ ℝ, 

         𝑃(𝑥) is true only for 𝑥 = −2 and 𝑥 = 3, 

         𝑄(𝑥) is always false for all values of 𝑥 ∈ ℝ. 

Hence, given an open proposition 𝑃(𝑥), with universe 𝑈, we observe that there are three 

possibilities. 

a. 𝑃(𝑥) is true for all 𝑥 ∈ 𝑈. 

b. 𝑃(𝑥) is true for some 𝑥 ∈ 𝑈. 

c. 𝑃(𝑥) is false for all 𝑥 ∈ 𝑈. 

Now we proceed to study open propositions which are satisfied by “all” and “some” members of 
the given universe. 

a. The phrase "for every 𝑥 " is called a universal quantifier. We regard "for every 𝑥," "for all 𝑥," 

and "for each 𝑥 " as having the same meaning and symbolize each by “(∀𝑥).” Think of the 

symbol  as an inverted 𝐴(representing all). If  𝑃(𝑥) is an open proposition with universe 𝑈, then 
(∀𝑥)𝑃(𝑥) is a quantified proposition and is read as “every 𝑥 ∈ 𝑈 has the property 𝑃.” 

b. The phrase "there exists an 𝑥 " is called an existential quantifier. We regard "there exists an 𝑥," 

"for some 𝑥," and "for at least one 𝑥 " as having the same meaning, and symbolize each by 

“(∃𝑥).” Think of the symbol  as the backwards capital 𝐸(representing exists). If  𝑃(𝑥) is an 

open proposition with universe 𝑈, then (∃𝑥)𝑃(𝑥) is a quantified proposition and is read as “there 

exists 𝑥 ∈ 𝑈 with the property 𝑃.” 

Remarks: 

i. To show that (∀𝑥)𝑃(𝑥) is 𝐹, it is sufficient to find at least one 𝑎 ∈ 𝑈 such that 𝑃(𝑎) is 

𝐹.  Such an element 𝑎 ∈ 𝑈 is called a counter example. 

ii. (∃𝑥)𝑃(𝑥) is 𝐹 if we cannot find any 𝑎 ∈ 𝑈 having the property 𝑃. 

Example 1.14: 
a. Write the following statements using quantifiers. 

i. For each real number 𝑥 > 0, 𝑥ଶ + 𝑥 − 6 = 0. 
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Solution:  (∀𝑥 > 0)(𝑥ଶ + 𝑥 − 6 = 0). 

ii. There is a real number 𝑥 > 0 such that 𝑥ଶ + 𝑥 − 6 = 0. 

Solution: (∃𝑥 > 0)(𝑥ଶ + 𝑥 − 6 = 0). 
iii. The square of any real number is nonnegative. 

Solution: (∀𝑥 ∈ ℝ)(𝑥ଶ ≥ 0). 
b.  

i.  Let 𝑃(𝑥): 𝑥ଶ + 1 ≥ 0. The truth value for (∀𝑥)𝑃(𝑥) [i.e (∀𝑥)(𝑥ଶ + 1 ≥ 0)] is 𝑇. 

ii. Let 𝑃(𝑥): 𝑥 < 𝑥ଶ. The truth value for (∀𝑥)(𝑥 < 𝑥ଶ) is 𝐹. 𝑥 =
ଵ

ଶ
  is a 

counterexample since 
ଵ

ଶ
∈ ℝ but  

ଵ

ଶ
<

ଵ

ସ
. On the other hand, (∃𝑥)𝑃(𝑥) is true, since 

−1 ∈ ℝ such that −1 < 1. 

iii. Let 𝑃(𝑥): |𝑥| = −1. The truth value for (∃𝑥)𝑃(𝑥) is 𝐹 since there is no real 

number whose absolute value is −1.  

Relationship between the existential and universal quantifiers 

If 𝑃(𝑥) is a formula in 𝑥, consider the following four statements. 

a. (∀𝑥)𝑃(𝑥). 

b. (∃𝑥)𝑃(𝑥).  

c. (∀x)ℸP(x). 

d. (∃x)ℸP(x). 

We might translate these into words as follows.  

a. Everything has property 𝑃. 

b. Something has property 𝑃. 

c. Nothing has property 𝑃. 

d. Something does not have property 𝑃. 

Now (d) is the denial of (a), and (c) is the denial of (b), on the basis of everyday meaning. Thus, 
for example, the existential quantifier may be defined in terms of the universal quantifier.  

Now we proceed to discuss the negation of quantifiers. Let 𝑃(𝑥) be an open proposition. Then 
(∀𝑥)𝑃(𝑥) is false only if we can find an individual “𝑎” in the universe such that 𝑃(𝑎) is false. If 

we succeed in getting such an individual, then  (∃𝑥)𝑃(𝑥) is true. Hence (∀𝑥)𝑃(𝑥) will be false 

if (∃𝑥)𝑃(𝑥) is true. Therefore the negation of (∀𝑥)𝑃(𝑥) is (∃𝑥)𝑃(𝑥). Hence we conclude 
that 

(∀𝑥)𝑃(𝑥) ≡ (∃𝑥)𝑃(𝑥). 
Similarly, we can easily verified that 

(∃𝑥)𝑃(𝑥) ≡ (∀𝑥)𝑃(𝑥). 

Remark: To negate a statement that involves the quantifiers  and , change each  to , 

change each  to , and negate the open statement. 
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Example 1.15: 

Let 𝑈 = ℝ.  

a.  (∃𝑥)(𝑥 < 𝑥ଶ) ≡ (∀𝑥)(𝑥 < 𝑥ଶ) 

                           ≡ (∀𝑥)(𝑥 ≥ 𝑥ଶ). 

b. (∀𝑥)(4𝑥 + 1 = 0) ≡ (∃𝑥)(4𝑥 + 1 = 0) 

                                 ≡ (∃𝑥)(4𝑥 + 1 ≠ 0). 
Given propositions containing quantifiers we can form a compound proposition by joining them 
with connectives in the same way we form a compound proposition without quantifiers. For 

example, if we have (∀𝑥)𝑃(𝑥) and (∃𝑥)𝑄(𝑥) we can form (∀𝑥)𝑃(𝑥) ⟺ (∃𝑥)𝑄(𝑥). 
Consider the following statements involving quantifiers. Illustrations of these along with 
translations appear below.  

a. All rationals are reals.                                    (∀𝑥)(ℚ(𝑥) ⟹ ℝ(𝑥)). 

b. No rationals are reals.                                    (∀𝑥)(ℚ(𝑥) ⟹ ℝ(𝑥)).  

c. Some rationals are reals.                                (∃𝑥)(ℚ(𝑥) ∧ ℝ(𝑥)). 

d. Some rationals are not reals.                          (∃𝑥)(ℚ(𝑥) ∧ ℝ(𝑥)). 

Example 1.16: 

Let 𝑈 = The set of integers. 

Let 𝑃(𝑥): 𝑥 is a prime number.  

      𝑄(𝑥): 𝑥 is an even number.  

      𝑅(𝑥): 𝑥 is an odd number. 

Then  

a. (∃𝑥)[𝑃(𝑥) ⟹ 𝑄(𝑥)] is 𝑇; since there is an 𝑥, say 2, such that 𝑃(2) ⟹ 𝑄(2) is 𝑇. 

b. (∀𝑥)[𝑃(𝑥) ⟹ 𝑄(𝑥)] is 𝐹. As a counterexample take 7. Then 𝑃(7) is 𝑇 and 𝑄(7) is 𝐹. 

Hence 𝑃(7) ⟹ 𝑄(7). 

c. (∀𝑥)[𝑅(𝑥) ∧ 𝑃(𝑥)] is 𝐹. 

d. (∀𝑥)[(𝑅(𝑥) ∧ 𝑃(𝑥)) ⟹ 𝑄(𝑥)] is 𝐹. 

Quantifiers Occurring in Combinations 

So far, we have only considered cases in which universal and existential quantifiers appear 
simply.  However, if we consider cases in which universal and existential quantifiers occur in 
combination, we are lead to essentially new logical structures.  The following are the simplest 

forms of combinations: 

1. (∀𝑥)(∀𝑦)𝑃(𝑥, 𝑦) 

“for all 𝑥 and for all 𝑦 the relation 𝑃(𝑥, 𝑦) holds”;  

2. (∃𝑥)(∃𝑦)𝑃(𝑥, 𝑦)  

              “there is an 𝑥 and there is a 𝑦 for which 𝑃(𝑥, 𝑦) holds”; 

3. (∀𝑥)(∃𝑦)𝑃(𝑥, 𝑦)  

 “for every 𝑥 there is a 𝑦 such that 𝑃(𝑥, 𝑦) holds”; 
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4. (∃𝑥)(∀𝑦)𝑃(𝑥, 𝑦) 

“there is an 𝑥 which stands to every 𝑦 in the relation 𝑃(𝑥, 𝑦).” 

Example 1.17: 

Let 𝑈 = The set of integers. 

Let 𝑃(𝑥, 𝑦): 𝑥 +  𝑦 =  5. 

a. (∃𝑥) (∃𝑦) 𝑃(𝑥, 𝑦) means that there is an integer 𝑥 and there is an integer 𝑦 such that 

𝑥 +  𝑦 =  5.  This statement is true when 𝑥 =  4 and 𝑦 =  1, since 4 + 1 = 5.  

Therefore, the statement (∃𝑥) (∃𝑦) 𝑃(𝑥, 𝑦) is always true for this universe.  There are 

other choices of 𝑥 and 𝑦 for which it would be true, but the symbolic statement merely 

says that there is at least one choice for 𝑥 and 𝑦 which will make the statement true, and 

we have demonstrated one such choice. 

b. (∃𝑥) (∀𝑦) 𝑃(𝑥, 𝑦) means that there is an integer 𝑥 such that for every 𝑦, 𝑥  +  𝑦 =  5.  

This is false since no fixed value of 𝑥 will make this true for all 𝑦 in the universe; e.g. if 

𝑥  =  1, then 1 +  𝑦 =  5 is false for some 𝑦. 

c. (∀𝑥) (∃𝑦) 𝑃(𝑥, 𝑦) means that for every integer 𝑥, there is an integer 𝑦 such that  

𝑥 +  𝑦 =  5.  Let 𝑥 =  𝑎, then 𝑦 =  5 − 𝑎 will always be an integer, so this is a true 

statement. 

d. (∀𝑥) (∀𝑦) 𝑃(𝑥, 𝑦) means that for every integer 𝑥 and for every integer 𝑦, 𝑥 +  𝑦 =  5.  

This is false, for if 𝑥 =  2 and 𝑦 = 7, we get 2 + 7 = 9 ≠ 5. 

Example 1.18:  
a. Consider the statement 

For every two real numbers 𝑥 and 𝑦,𝑥ଶ + 𝑦ଶ ≥ 0. 
If we let 

                 𝑃(𝑥, 𝑦): 𝑥ଶ + 𝑦ଶ ≥ 0 

where the domain of both 𝑥 and 𝑦 is , the statement can be expressed as  

(∀𝑥 ∈ ℝ)(∀𝑦 ∈ ℝ)𝑃(𝑥, 𝑦) or as (∀𝑥 ∈ ℝ)(∀𝑦 ∈ ℝ)(𝑥ଶ + 𝑦ଶ ≥ 0). 

Since 𝑥ଶ ≥ 0 and 𝑦ଶ ≥ 0 for all real numbers 𝑥 and 𝑦, it follows that 𝑥ଶ + 𝑦ଶ ≥ 0 and so 

𝑃(𝑥, 𝑦) is true for all real numbers 𝑥 and 𝑦. Thus the quantified statement is true. 
b. Consider the open statement  

𝑃(𝑥, 𝑦): |𝑥 − 1| + |𝑦 − 2| ≤ 2 

where the domain of the variable 𝑥 is the set 𝐸 of even integers and the domain of the variable 𝑦 

is the set 𝑂 of odd integers. Then the quantified statement    
(∃𝑥 ∈ 𝐸)(∃𝑦 ∈ 𝑂)𝑃(𝑥, 𝑦) 
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can be expressed in words as  

There exist an even integer 𝑥 and an odd integer 𝑦 such that |𝑥 − 1| + |𝑦 − 2| ≤ 2. 

Since 𝑃(2,3): 1 + 1 ≤ 2 is true, the quantified statement is true. 
c. Consider the open statement  

𝑃(𝑥, 𝑦): 𝑥𝑦 = 1 

where the domain of both 𝑥 and 𝑦 is the set ℚା of positive rational numbers. Then the quantified 
statement  

(∀𝑥 ∈ ℚା)(∃𝑦 ∈ ℚା)𝑃(𝑥, 𝑦) 
can be expressed in words as 

For every positive rational number 𝑥, there exists a positive rational number 𝑦 such that 𝑥𝑦 = 1. 

It turns out that the quantified statement is true. If we replace ℚା by , then we have    
(∀𝑥 ∈ ℝ)(∃𝑦 ∈ ℝ)𝑃(𝑥, 𝑦) . 

Since 𝑥 = 0 and for every real number 𝑦, 𝑥𝑦 = 0 ≠ 1, (∀𝑥 ∈ ℝ)(∃𝑦 ∈ ℝ)𝑃(𝑥, 𝑦) is false. 
d. Consider the open statement 

𝑃(𝑥, 𝑦): 𝑥𝑦 is odd 

where the domain of both 𝑥 and 𝑦 is the set  of natural numbers. Then the quantified statement  
(∃𝑥 ∈ ℕ)(∀𝑦 ∈ ℕ)𝑃(𝑥, 𝑦), 

expressed in words, is  

There exists a natural number 𝑥 such that for every natural numbers 𝑦, 𝑥𝑦 is odd. The statement 
is false. 
In general, from the meaning of the universal quantifier it follows that in an expression 
(∀𝑥)(∀𝑦)𝑃(𝑥, 𝑦) the two universal quantifiers may be interchanged without altering the sense of 

the sentence. This also holds for the existential quantifies in an expression such as 
(∃𝑥)(∃𝑦)𝑃(𝑥, 𝑦). 

In the statement (∀𝑥)(∃𝑦)𝑃(𝑥, 𝑦) , the choice of 𝑦 is allowed to depend on 𝑥 - the 𝑦 that works 

for one 𝑥 need not work for another 𝑥. On the other hand, in the statement (∃𝑦)(∀𝑥)𝑃(𝑥, 𝑦), the 

𝑦 must work for all 𝑥, i.e., 𝑦 is independent of 𝑥. For example, the expression (∀𝑥)(∃𝑦)(𝑥 < 𝑦),  

where 𝑥 and 𝑦 are variables referring to the domain of real numbers, constitutes a true 

proposition, namely, “For every number 𝑥, there is a number 𝑦, such that 𝑥 is less that 𝑦,” i.e., 

“given any number, there is a greater number.”  However, if the order of the symbol (∀𝑥) and 
(∃𝑦) is changed, in this case, we obtain: (∃𝑦)(∀𝑥)(𝑥 < 𝑦), which is a false proposition, namely, 

“There is a number which is greater than every number.”  By transposing (∀𝑥) and (∃𝑦), 
therefore, we get a different statement. 
 The logical situation here is: 

(∃𝑦)(∀𝑥)𝑃(𝑥, 𝑦) ⟹ (∀𝑥)(∃𝑦)𝑃(𝑥, 𝑦). 

Finally, we conclude this section with the remark that there are no mechanical rules for 
translating sentences from English into the logical notation which has been introduced. In every 
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case one must first decide on the meaning of the English sentence and then attempt to convey 
that same meaning in terms of predicates, quantifiers, and, possibly, individual constants. 
 

Exercises 

1. In each of the following, two open statements 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are given, where the 

domain of both 𝑥 and 𝑦 is . Determine the truth value of 𝑃(𝑥, 𝑦) ⟹ 𝑄(𝑥, 𝑦) for the 

given values of 𝑥 and 𝑦. 

a. 𝑃(𝑥, 𝑦): 𝑥ଶ − 𝑦ଶ = 0. and 𝑄(𝑥, 𝑦): 𝑥 = 𝑦. (𝑥, 𝑦) ∈ {(1, −1), (3,4), (5,5)}. 

b. 𝑃(𝑥, 𝑦): |𝑥| = |𝑦|. and 𝑄(𝑥, 𝑦): 𝑥 = 𝑦. (𝑥, 𝑦) ∈ {(1,2), (2, −2), (6,6)}. 

c. 𝑃(𝑥, 𝑦): 𝑥ଶ + 𝑦ଶ = 1. and 𝑄(𝑥, 𝑦): 𝑥 + 𝑦 = 1. 
(𝑥, 𝑦) ∈ {(1, −1), (−3,4), (0, −1), (1,0)}. 

2. Let 𝑂 denote the set of odd integers and let 𝑃(𝑥): 𝑥ଶ + 1 is even, and 𝑄(𝑥): 𝑥ଶ is even. 

be open statements over the domain 𝑂. State (∀𝑥 ∈ 𝑂)𝑃(𝑥) and (∃𝑦 ∈ 𝑂)𝑄(𝑥) in words. 
3. State the negation of the following quantified statements. 

a. For every rational number 𝑟, the number 
ଵ


 is rational. 

b. There exists a rational number 𝑟 such that 𝑟ଶ = 2. 

4. Let 𝑃(𝑛):
ହି

ଷ
 is an integer. be an open sentence over the domain . Determine, with 

explanations, whether the following statements are true or false: 

a. (∀𝑛 ∈ ℤ)𝑃(𝑛). 

b. (∃𝑛 ∈ ℤ)𝑃(𝑛). 
5. Determine the truth value of the following statements. 

a. (∃𝑥 ∈ ℝ)(𝑥ଶ − 𝑥 = 0). 

b. (∀𝑥 ∈ ℕ)(𝑥 + 1 ≥ 2). 

c. (∀𝑥 ∈ ℝ)(√𝑥ଶ = 𝑥). 

d.   (∃𝑥 ∈ ℚ)(3𝑥ଶ − 27 = 0). 

e. (∃𝑥 ∈ ℝ)(∃𝑦 ∈ ℝ)(𝑥 + 𝑦 + 3 = 8). 

f. (∃𝑥 ∈ ℝ)(∃𝑦 ∈ ℝ)(𝑥ଶ + 𝑦ଶ = 9).   

g. (∀𝑥 ∈ ℝ)(∃𝑦 ∈ ℝ)(𝑥 + 𝑦 = 5). 

h. (∃𝑥 ∈ ℝ)(∀𝑦 ∈ ℝ)(𝑥 + 𝑦 = 5)        
6. Consider the quantified statement  

                   For every 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐴, 𝑥𝑦 − 2 is prime. 

              where the domain of the variables 𝑥 and 𝑦 is 𝐴 = {3,5,11}. 

a. Express this quantified statement in symbols. 
b. Is the quantified statement in (a) true or false? Explain. 
c. Express the negation of the quantified statement in (a) in symbols. 

d. Is the negation of the quantified in (a) true or false? Explain. 

7. Consider the open statement 𝑃(𝑥, 𝑦):
௫

௬
< 1. where the domain of 𝑥 is 𝐴 = {2,3,5} and the 
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domain of 𝑦 is 𝐵 = {2,4,6}. 

a. State the quantified statement (∀𝑥 ∈ 𝐴)(∃𝑦 ∈ 𝐵)𝑃(𝑥, 𝑦) in words. 
b. Show quantified statement in (a) is true. 

8.   Consider the open statement 𝑃(𝑥, 𝑦): 𝑥 − 𝑦 < 0. where the domain of 𝑥 is 𝐴 = {3,5,8} 

and the domain of 𝑦 is 𝐵 = {3,6,10}. 

a. State the quantified statement (∃𝑦 ∈ 𝐵)(∀𝑥 ∈ 𝐴)𝑃(𝑥, 𝑦) in words. 
b. Show quantified statement in (a) is true. 

 

 

1. 3.  Argument and Validity 

Section objectives: 

After completing this section, students will be able to:-  

 Define argument (or logical deduction). 

 Identify hypothesis and conclusion of a given argument. 

 Determine the validity of an argument using a truth table. 

 Determine the validity of an argument using rules of inferences. 

Definition 1.7: An argument (logical deduction) is an assertion that a given set of statements 

𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛, called hypotheses or premises, yield another statement 𝑄, called the conclusion. Such 

a logical deduction is denoted by: 

𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛 ├  𝑄 or 

𝑝1 

𝑝2 

 
𝑝𝑛

𝑄  

Example 1.19:  Consider the following argument: 
If you study hard, then you will pass the exam. 

You did not pass the exam. 
Therefore, you did not study hard. 

Let 𝑝: You study hard. 

       𝑞: You will pass the exam. 
The argument form can be written as: 
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When is an argument form accepted to be correct?  In normal usage, we use an argument in order 
to demonstrate that a certain conclusion follows from known premises.  Therefore, we shall 

require that under any assignment of truth values to the statements appearing, if the premises 
became all true, then the conclusion must also become true.  Hence, we state the following 
definition. 

Definition 1.8: An argument form 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛 ├  𝑄 is said to be valid if 𝑄 is true whenever all the 

premises 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛 are true; otherwise it is invalid. 

 

Example 1.20: Investigate the validity of the following argument:  

a.    pqqp      ,           

b.    prqqp     ,   

c. If it rains, crops will be good. It did not rain. Therefore, crops were not good.  
Solution: First we construct a truth table for the statements appearing in the argument forms. 

a.   

𝒑 𝒒 𝑝 𝑞 𝒑 ⟹ 𝑞 

𝑻 

𝑻 

𝑭 

𝑭 

𝑻 

𝑭 

𝑻 

𝑭 

𝑭 

𝑭 

𝑻 

𝑻 

𝑭 

𝑻 

𝑭 

𝑻 

𝑻 

𝑭 

𝑻 

𝑻 

The premises 𝑝 ⟹ 𝑞 and 𝑞 are true simultaneously in row 4 only. Since in this case 𝑝 is also 
true, the argument is valid. 

b.  

𝒑 𝒒 𝒓 𝑞 𝒑 ⟹ 𝑞 𝑞 ⟹ 𝑟 

𝑻 𝑻 𝑻 𝑭 𝑻 𝑻 

𝑻 𝑻 𝑭 𝑭 𝑻 𝑻 

𝑻 𝑭 𝑻 𝑻 𝑭 𝑻 

𝑻 𝑭 𝑭 𝑻 𝑭 𝑭 

𝑭 𝑻 𝑻 𝑭 𝑻 𝑻 

𝑭 𝑻 𝑭 𝑭 𝑻 𝑻 

𝑭 𝑭 𝑻 𝑻 𝑻 𝑻 

𝑭 𝑭 𝑭 𝑻 𝑻 𝑭 
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The 1st, 2nd, 5th, 6th and 7th rows are those in which all the premises take value 𝑇.  In the 5th, 6th 

and 7th rows however the conclusion takes value 𝐹.  Hence, the argument form is invalid.  

c. Let 𝑝: It rains. 

      𝑞: Crops are good. 

                      𝑝: It did not rain. 

                      𝑞: Crops were not good. 

The argument form is 𝑝 ⟹ 𝑞,𝑝├𝑞 
Now we can use truth table to test validity as follows: 

𝒑 𝒒 𝑝 𝑞 𝒑 ⟹ 𝑞 

𝑻 

𝑻 

𝑭 

𝑭 

𝑻 

𝑭 

𝑻 

𝑭 

𝑭 

𝑭 

𝑻 

𝑻 

𝑭 

𝑻 

𝑭 

𝑻 

𝑻 

𝑭 

𝑻 

𝑻 

The premises 𝑝 ⟹ 𝑞 and 𝑝 are true simultaneously in row 4 only. Since in this case 𝑞 is also 
true, the argument is valid. 

Remark: 
1. What is important in validity is the form of the argument rather than the meaning or 

content of the statements involved. 

2. The argument form 𝑝ଵ, 𝑝ଶ, 𝑝ଷ, … , 𝑝 ├  𝑄 is valid iff the statement  

(𝑝ଵ ∧ 𝑝ଶ ∧ 𝑝ଷ ∧ … ∧ 𝑝 ) ⟹ 𝑄 is a tautology. 

Rules of inferences 
Below we list certain valid deductions called rules of inferences. 
 
1. Modes Ponens 

  𝑝 

  𝑝 ⟹ 𝑞 

      𝑞 

 

2. Modes Tollens 

𝑞 

                        𝑝 ⟹ 𝑞 

                         𝑝 

 

3. Principle of Syllogism 

 𝑝 ⟹ 𝑞  

𝑞 ⟹ 𝑟 

                  𝑝 ⟹ 𝑟 
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4. Principle of Adjunction 

a.      𝑝  

          𝑞    

         𝑝 ∧ 𝑞 

b.             𝑞    

          𝑝 ∨ 𝑞 

 

5. Principle of Detachment 

            𝑝 ∧ 𝑞 

              𝑝, 𝑞 

 

6. Modes Tollendo Ponens 

   𝑝 

                        𝑝 ∨ 𝑞 

   𝑞 

 

7. Modes Ponendo Tollens 

  (𝑝 ∧ 𝑞) 

     𝑝                             

     𝑞 

 

8. Constructive Dilemma 
(𝑝 ⟹ 𝑞) ∧ (𝑟 ⟹ 𝑠) 

    𝑝 ∨ 𝑟                          

      𝑞 ∨ 𝑠 

 

9. Principle of Equivalence 

𝑝 ⟺ 𝑞 

     𝑝       

     𝑞  

 

10. Principle of Conditionalization 

                             𝑝       

                        𝑞 ⟹ 𝑝 

 

  

Formal proof of validity of an argument 

Definition 1.9: A formal proof of a conclusion 𝑄 given hypotheses 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛 is a sequence of 

stapes, each of which applies some inference rule to hypotheses or previously proven statements 

(antecedent) to yield a new true statement (the consequent). 

A formal proof of validity is given by writing on the premises and the statements which follows 
from them in a single column, and setting off in another column, to the right of each statement, 
its justification.  It is convenient to list all the premises first. 
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Example 1.21: Show that 𝑝 ⟹ 𝑞, 𝑞├𝑝 is valid. 

Solution: 

1. 𝑞 is true                                                   premise 

2.   𝑝 ⟹ 𝑞                                                premise 

3. 𝑞 ⟹ 𝑝                                                  contrapositive of (2) 

4. ℸp                                                            Modes Ponens using (1) and (3) 

Example 1.22: Show that the hypotheses  
                     It is not sunny this afternoon and it is colder than yesterday. 
                     If we go swimming, then it is sunny. 
                     If we do not go swimming, then we will take a canoe trip. 

                     If we take a canoe trip, then we will be home by sunset. 
       Lead to the conclusion: 
                     We will be home by sunset. 

 Let 𝑝: It is sunny this afternoon.  

       𝑞: It is colder than yesterday.    

       𝑟: We go swimming. 

       𝑠: We take a canoe trip. 

       𝑡: We will be home by sunset.  
Then  

1. 𝑝 ∧ 𝑞                       hypothesis 

2. 𝑝                             simplification using (1) 

3. 𝑟 ⟹ 𝑝                       hypothesis 

4. 𝑟                             Modus Tollens using (2) and (3) 

5. 𝑟 ⟹ 𝑠                    hypothesis 

6. 𝑠                                Modus Ponens using (4) and (5) 

7. 𝑠 ⟹ 𝑡                       hypothesis 

8. 𝑡                               Modus Ponens using (6) and (7) 

Exercises 
1. Use the truth table method to show that the following argument forms are valid. 

i. 𝑝 ⟹ 𝑞, 𝑞 ├ 𝑝. 

ii. 𝑝 ⟹ 𝑝, 𝑝, 𝑟 ⟹ 𝑞 ├ 𝑟. 

iii. 𝑝 ⟹ 𝑞,𝑟 ⟹ 𝑞 ├𝑟 ⟹ 𝑝. 

iv. 𝑟 ∨ 𝑠, (𝑠 ⟹ 𝑝) ⟹ 𝑟 ├ 𝑝. 

v. 𝑝 ⟹ 𝑞,𝑝 ⟹ 𝑟, 𝑟 ⟹ 𝑠├ 𝑞 ⟹ 𝑠. 

2. For the following argument given a, b and c below:  
i. Identify the premises. 
ii. Write argument forms. 
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iii. Check the validity. 
a.    If he studies medicine, he will get a good job. If he gets a good job, he 

will get a good wage. He did not get a good wage. Therefore, he did not 

study medicine. 
b. If the team is late, then it cannot play the game. If the referee is here, 

then the team is can play the game. The team is late. Therefore, the 

referee is not here. 
c.   If the professor offers chocolate for an answer, you answer the 

professor’s question. The professor offers chocolate for an answer. 

Therefore, you answer the professor’s question 
3. Give formal proof to show that the following argument forms are valid. 

a. 𝑝 ⟹ 𝑞, 𝑞 ├ 𝑝. 

b. 𝑝 ⟹ 𝑞, 𝑝, 𝑟 ⟹ 𝑞 ├ 𝑟. 

c. 𝑝 ⟹ 𝑞,𝑟 ⟹ 𝑞 ├ 𝑟 ⟹ 𝑝. 

d. 𝑟 ∧ 𝑠, (𝑠 ⟹ 𝑝) ⟹ 𝑟 ├ 𝑝. 

e. 𝑝 ⟹,𝑝 ⟹ 𝑟, 𝑟 ⟹ 𝑠 ├ 𝑞 ⟹ 𝑠. 

f. 𝑝 ∨ 𝑞, 𝑟 ⟹ 𝑝, 𝑟 ├ 𝑞.  

g. 𝑝 ∧ 𝑞, (𝑞 ∨ 𝑟) ⟹  𝑝 ├ 𝑟. 

h. 𝑝 ⟹ (𝑞 ∨ 𝑟),𝑟, 𝑝 ├ 𝑞. 

i. 𝑞 ⟹ 𝑝, 𝑟 ⟹ 𝑝,𝑞 ├ 𝑟. 

4. Prove the following are valid arguments by giving formal proof. 
a. If the rain does not come, the crops are ruined and the people will starve.  The 

crops are not ruined or the people will not starve.  Therefore, the rain comes. 
b. If the team is late, then it cannot play the game.  If the referee is here then the 

team can play the game.  The team is late.  Therefore, the referee is not here. 

1.4.  Set theory 
In this section, we study some part of set theory especially description of sets, Venn diagrams 

and operations of sets. 

Section objectives: 

After completing this section, students will be able to:-  

 Explain the concept of set. 
 Describe sets in different ways. 
 Identify operations of sets. 

 Illustrate sets using Venn diagrams. 
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1.4.1. The concept of a set 

The term set is an undefined term, just as a point and a line are undefined terms in geometry. 
However, the concept of a set permeates every aspect of mathematics. Set theory underlies the 

language and concepts of modern mathematics. The term set refers to a well-defined collection 
of objects that share a certain property or certain properties. The term “well-defined” here means 
that the set is described in such a way that one can decide whether or not a given object belongs 

in the set. If 𝐴 is a set, then the objects of the collection 𝐴 are called the elements or members of 

the set 𝐴. If 𝑥 is an element of the set 𝐴, we write 𝑥 ∈ 𝐴. If 𝑥 is not an element of the set 𝐴, we 

write 𝑥 ∉ 𝐴. 
As a convention, we use capital letters to denote the names of sets and lowercase letters for 

elements of a set. 

Note that for each objects 𝑥 and each set 𝐴, exactly one of 𝑥 𝐴 or 𝑥 𝐴 but not both must be 
true.  

1.4.2. Description of sets 

Sets are described or characterized by one of the following four different ways.  

1.  Verbal Method               
In this method, an ordinary English statement with minimum mathematical symbolization of 
the property of the elements is used to describe a set. Actually, the statement could be in any 

language. 

Example 1.23: 
a.  The set of counting numbers less than ten. 
b.  The set of letters in the word “Addis Ababa.” 

c.   The set of all countries in Africa. 
2.  Roster/Complete Listing Method 

If the elements of a set can all be listed, we list them all between a pair of braces without 

repetition separating by commas, and without concern about the order of their appearance. 
Such a method of describing a set is called the roster/complete listing method. 

Examples 1.24:  

a.    The set of vowels in English alphabet may also be described as {𝑎, 𝑒, 𝑖, 𝑜, 𝑢}. 

b.   The set of positive factors of 24 is also described as {1, 2, 3, 4, 6, 8, 12, 24}. 

Remark: 
i. We agree on the convention that the order of writing the elements in the list is 

immaterial. As a result the sets {𝑎, 𝑏, 𝑐}, {𝑏, 𝑐, 𝑎} and {𝑐, 𝑎, 𝑏} contain the same elements, 

namely 𝑎, 𝑏 and 𝑐. 

ii.   The set {𝑎, 𝑎, 𝑏, 𝑏, 𝑏} contains just two distinct elements; namely 𝑎 and 𝑏, hence it is the 

same set as {𝑎, 𝑏}. We list distinct elements without repetition. 
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Example 1.25:  

a.  Let 𝐴 =  {𝑎, 𝑏, {𝑐}}. Elements of 𝐴 are 𝑎, 𝑏 and {𝑐}.  

Notice that 𝑐 and {𝑐} are different objects. Here {𝑐} ∈ 𝐴 but 𝑐 ∉ 𝐴. 

b. Let 𝐵 = ൛{𝑎}ൟ. The only element of 𝐵 is {𝑎}. But 𝑎 ∉ 𝐵.  

c.   Let 𝐶 =  {𝑎, 𝑏, {𝑎, 𝑏}, {𝑎, {𝑎}}}. Then C has four elements. 
The readers are invited to write down all the elements of C. 

3. Partial Listing Method 
In many occasions, the number of elements of a set may be too large to list them all; and in 
other occasions there may not be an end to the list. In such cases we look for a common 

property of the elements and describe the set by partially listing the elements. More precisely, 
if the common property is simple that it can easily be identified from a list of the first few 
elements, then with in a pair of  braces, we list these few elements followed (or preceded) by 

exactly three dotes and possibly by one last element. The following are such instances of 
describing sets by partial listing method. 

Example 1.26:  

a. The set of all counting numbers is ℕ =  {1, 2, 3, 4, … }. 

b. The set of non-positive integers is {… , −4, −3, −2, −1, 0}. 

c. The set of multiples of 5 is {… , −15, −10, −5, 0 5, 10, 15, … }. 

d. The set of odd integers less than 100 is {… , −3, −1, 1, 3, 5, …  99}. 

4. Set-builder Method 

When all the elements satisfy a common property 𝑃, we express the situation as an open 

proposition 𝑃(𝑥) and describe the set using a method called the Set-builder Method as 
follows: 

𝐴 =  {𝑥 | 𝑃(𝑥)} 𝑜𝑟 𝐴 =  {𝑥: 𝑃(𝑥)} 

We read it as “𝐴 is equal to the set of all 𝑥’s such that 𝑃(𝑥) is true.” Here the bar “| ‟ and the 

colon “ ” mean “such that.” Notice that the letter 𝑥 is only a place holder and can be replaced 

throughout by other letters. So, for a property 𝑃, the set {𝑥 | 𝑃(𝑥)}, {𝑡 | 𝑃(𝑡)} and {𝑦 |𝑃(𝑦)} are 
all the same set.  

Example 1.27: The following sets are described using the set-builder method. 

a. 𝐴 = {𝑥 | 𝑥 is a vowel in the English alphabet}. 

b. 𝐵 = {𝑡 | 𝑡 is an even integer}. 

c. 𝐶 = {𝑛 | 𝑛 is a natural number and 2𝑛 –  15 is negative}. 

d. 𝐷 = {𝑦| 𝑦ଶ–  𝑦 –  6 =  0}. 

e. 𝐸 = {𝑥 | 𝑥 is an integer and 𝑥 –  1 <  0 ⟹ 𝑥ଶ–  4 >  0}. 

Exercise: Express each of the above by using either the complete or the partial listing method. 

Definition 1.10: The set which has no element is called the empty (or null) set and is denoted by 𝜙 or {}. 
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Example 1.28: The set of 𝑥 ∈ ℝ such that 𝑥ଶ + 1 = 0 is an empty set. 

Relationships between two sets 

Definition 1.11:  Set 𝐵 is said to be a subset of set 𝐴 (or is contained in 𝐴), denoted by 𝐵 ⊆ 𝐴, if every 

element of 𝐵 is an element of 𝐴, i.e.,  
(∀𝑥)(𝑥 ∈ 𝐵 ⟹ 𝑥 ∈ 𝐴). 

It follows from the definition that set 𝐵 is not a subset of set 𝐴 if at least one element of 𝐵 is not an 

element of 𝐴. i.e., 𝐵 ⊈ 𝐴 ⟺ (∃𝑥)(𝑥 ∈ 𝐵 ⟹ 𝑥 ∉ 𝐴). In such cases we write 𝐵 ⊈ 𝐴 or 𝐴 ⊉ 𝐵. 

Remarks: For any set 𝐴, 𝜙 ⊆ 𝐴 and 𝐴 ⊆ 𝐴. 

Example 1.29:  

a. If 𝐴 =  {𝑎, 𝑏}, 𝐵 =  {𝑎, 𝑏, 𝑐} and  𝐶 =  {𝑎, 𝑏, 𝑑}, then 𝐴 ⊆  𝐵 and 𝐴 ⊆ 𝐶. On the 

other hand, it is clear that: 𝐵 ⊈ 𝐴, 𝐵 ⊈ 𝐶 and 𝐶 ⊈ 𝐵. 

b. If 𝑆 = {𝑥 | 𝑥 is a multiple of 6} and 𝑇 =  {𝑥 | 𝑥 is even integer}, then 𝑆 ⊆ 𝑇 since 

every multiple of 6 is even. However, 2 ∈ 𝑇 while 2 ∉ 𝑆. Thus 𝑇 ⊈ 𝑆. 

c. If 𝐴 =  {𝑎, {𝑏}}, then {𝑎} ⊆ 𝐴and ൛{𝑏}ൟ ⊆ 𝐴. On the other hand, since 𝑏 ∉ 𝐴, 

{𝑏}  ⊈ 𝐴, and {a, 𝑏}  ⊈ 𝐴. 

Definition 1.12: Sets 𝐴 and 𝐵 are said to be equal if they contain exactly the same elements. In this case, 

we write 𝐴 =  𝐵. That is,  
(∀𝑥)(𝑥 ∈ 𝐵 ⟺ 𝑥 ∈ 𝐴). 

Example 1.30:              

a. The sets {1, 2, 3}, {2, 1, 3}, {1, 3, 2} are all equal. 

b. {x|xisacountingnumber} = {x|xisapositiveinteger} 

Definition 1.13: Set 𝐴 is said to be a proper subset of set 𝐵 if every element of 𝐴 is also an element of 

𝐵, but 𝐵 has at least one element that is not in 𝐴. In this case, we write 𝐴 ⊂ 𝐵. We also say 𝐵 is a proper 

super set of A, and write 𝐵 ⊃ 𝐴. It is clear that 
                                         𝐴 ⊂ 𝐵 ⟺ [(∀𝑥)(𝑥 ∈ 𝐴 ⟹ 𝑥 ∈ 𝐵) ∧ (𝐴 ≠ 𝐵)]. 

Remark: Some authors do not use the symbol . Instead they use the symbol for both subset 

and proper subset. In this material, we prefer to use the notations commonly used in high school 

mathematics, and we continue using and differently, namely for subset and proper subset, 

respectively. 

Definition 1.14: Let 𝐴 be a set. The power set of 𝐴, dented by 𝑃(𝐴), is the set whose elements are all 

subsets of 𝐴. That is, 
𝑃(𝐴) = {𝐵: 𝐵 ⊆ 𝐴}. 
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Example 1.31: Let 𝐴 = {𝑥, 𝑦, 𝑧}. As noted before, 𝜙 and 𝐴 are subset of 𝐴. Moreover, 
{𝑥}, {𝑦}, {𝑧}, {𝑥, 𝑦}, {𝑥, 𝑧} and {𝑦, 𝑧} are also subsets of 𝐴. Therefore,  

𝑃(𝐴) = {𝜙, {𝑥}, {𝑦}, {𝑧}, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}, 𝐴}. 

Frequently it is necessary to limit the topic of discussion to elements of a certain fixed set and 
regard all sets under consideration as a subset of this fixed set. We call this set the universal set 

or the universe and denoted by 𝑼. 

Exercises  
1. Which of the following are sets? 

a. 1,2,3 

b. {1,2},3 
c. {{1},2},3 
d. {1,{2},3} 

e. {1,2,a,b}. 
2. Which of the following sets can be described in complete listing, partial listing and/or 

set-builder methods? Describe each set by at least one of the three methods. 
a. The set of the first 10 letters in the English alphabet. 

b. The set of all countries in the world. 
c. The set of students of Addis Ababa University in the 2018/2019 academic year. 
d. The set of positive multiples of 5. 

e. The set of all horses with six legs. 
3. Write each of the following sets by listing its elements within braces. 

a. 𝐴 = {𝑥 ∈ ℤ: −4 < 𝑥 ≤ 4} 

b. 𝐵 = {𝑥 ∈ ℤ: 𝑥ଶ < 5} 

c. 𝐶 = {𝑥 ∈ ℕ: 𝑥ଷ < 5} 

d. 𝐷 = {𝑥 ∈ ℝ: 𝑥ଶ − 𝑥 = 0} 

e. 𝐸 = {𝑥 ∈ ℝ: 𝑥ଶ + 1 = 0}. 

4. Let 𝐴 be the set of positive even integers less than 15. Find the truth value of each of the 
following. 

a. 15 ∈ 𝐴  

b.  −16 ∈ 𝐴  

c. 𝜙 ∈ 𝐴 

d. 12 ⊂ 𝐴 

e. {2, 8,14}𝐴 

f. {2,3,4} ⊆ 𝐴 

g. {2,4} ∈ 𝐴 

h. 𝜙 ⊂ 𝐴  
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i. {246} ⊆ 𝐴 

 
5. Find the truth value of each of the following and justify your conclusion. 

a. 𝜙 ⊆ 𝜙 
b. {1,2} ⊆ {1,2} 

c. 𝜙 ∈ 𝐴 for any set A  

d. {𝜙} ⊆ 𝐴, for any set A 

e. 5, 7 ⊆ {5, 6, 7, 8} 

f. 𝜙 ∈ {{𝜙}} 

g.  For any set 𝐴, 𝐴 ⊂ 𝐴 

h. {𝜙}  = 𝜙 
6. For each of the following set, find its power set. 

a. {𝑎𝑏}  

b. {1, 1.5}  

c. {𝑎, 𝑏}  

d. {𝑎, 0.5, 𝑥} 

7. How many subsets and proper subsets do the sets that contain exactly 1, 2, 3, 4, 8, 10 and 

20 elements have? 

8. If 𝑛 is a whole number, use your observation in Problems 6and 7 to discover a formula 

for the number of subsets of a set with 𝑛 elements. How many of these are proper subsets 

of the set? 
9. Is there a set A with exactly the following indicated property? 

a. Only one subset 

b. Only one proper subset 
c. Exactly 3 proper subsets 
d. Exactly 4 subsets 

e. Exactly 6 proper subsets 
f. Exactly 30 subsets 
g. Exactly 14 proper subsets 
h. Exactly 15 proper subsets 

10. How many elements does A contain if it has: 
a. 64 subsets?  
b. 31 proper subsets? 

c. No proper subset?  
d. 255 proper subsets? 

11. Find the truth value of each of the following. 

a. 𝜙 ∈ 𝑃(𝜙)  

b. 𝐹𝑜𝑟 𝑎𝑛𝑦 𝑠𝑒𝑡 𝐴, 𝜙 ⊆ 𝑃(𝐴) 
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c. 𝐹𝑜𝑟 𝑎𝑛𝑦 𝑠𝑒𝑡 𝐴, 𝐴 ∈ 𝑃(𝐴)  

d. 𝐹𝑜𝑟 𝑎𝑛𝑦 𝑠𝑒𝑡 𝐴, 𝐴 ⊂ 𝑃(𝐴). 

12. For any three sets 𝐴, 𝐵 and 𝐶, prove that: 

a. If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶, then 𝐴 ⊆ 𝐶. 

b. If 𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐶, then 𝐴 ⊂ 𝐶. 

 
1.4.3. Set Operations and Venn diagrams 

Given two subsets 𝐴 and 𝐵 of a universal set 𝑈, new sets can be formed using 𝐴 and 𝐵 in many 
ways, such as taking common elements or non-common elements, and putting everything 
together. Such processes of forming new sets are called set operations. In this section, three most 

important operations, namely union, intersection and complement are discussed. 

Definition 1.15: The union of two sets 𝐴 and 𝐵, denoted by 𝐴 ∪ 𝐵, is the set of all elements that are 

either in 𝐴 or in 𝐵 (or in both sets). That is,  
𝐴 ∪ 𝐵 = {𝑥: (𝑥 ∈ 𝐴) ∨ (𝑥 ∈ 𝐵)}. 

As easily seen the union operator “ ” in the theory of set is the counterpart of the logical 

operator “ ”. 

Definition 1.16: The intersection of two sets 𝐴 and 𝐵, denoted by 𝐴 ∩ 𝐵, is the set of all elements that are 

in 𝐴 and 𝐵. That is,   
𝐴 ∩ 𝐵 = {𝑥: (𝑥 ∈ 𝐴) ∧ (𝑥 ∈ 𝐵)}. 

As suggested by definition 1.15, the intersection operator “ ” in the theory of sets is the 

counterpart of the logical operator “ ”.  

Note: - Two sets 𝐴 and 𝐵 are said to be disjoint sets if 𝐴 ∩ 𝐵 = 𝜙. 

Example 1.32: 

a. Let 𝐴 =  {0, 1, 3, 5, 6} and 𝐵 =  {1, 2, 3, 4, 6, 7}. Then, 

         𝐴 ∪ 𝐵 =  {0, 1, 2, 3, 4, 5, 6, 7} and 𝐴 ∩ 𝐵 =  {1, 3, 6}. 

b. Let 𝐴 = The set of positive even integers, and 

      𝐵 = The set of positive multiples of 3. Then, 

𝐴 ∪ 𝐵 = {𝑥: 𝑥 is a positive intger that is either even or a multiple of 3} 

           =  {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, … } 

𝐴 ∩ 𝐵 =  {𝑥 | 𝑥 is a positive integer that is both even and multiple of 3} 

            =  {6, 12, 18, 24, … } 

            =  {𝑥 | 𝑥 is a positive multiple of 6. } 
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Definition 1.17: The difference between two sets 𝐴 and 𝐵, denoted by 𝐴 − 𝐵, is the of all elements in 𝐴 

and not in 𝐵; this set is also called the relative complement of 𝐵 with respect to 𝐴. Symbolically, 
𝐴 − 𝐵 = {𝑥: 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵}. 

Example 1.33: If = {1,3,5}, 𝐵 = {1,2}, then 𝐴 − 𝐵 = {3,5} and 𝐵 − 𝐴 = {2}. 

Note: The above example shows that, in general, 𝐴 − 𝐵 are 𝐵 − 𝐴 disjoint. 

Definition 1.18: Let 𝐴 be a subset of a universal set 𝑈. The absolute complement (or simply 

complement) of 𝐴, denoted by 𝐴′ (or 𝐴𝑐or 𝐴ഥ  ), is defined to be the set of all elements of 𝑈 that are not in 

𝐴. That is, 

                     𝐴′ = {𝑥: 𝑥 ∈ 𝑈 ∧ 𝑥 ∉ 𝐴} or 𝑥 ∈ 𝐴′ ⟺ 𝑥 ∉ 𝐴 ⟺ (𝑥 ∈ 𝐴). 

Notice that taking the absolute complement of 𝐴 is the same as finding the relative complement 

of 𝐴 with respect to the universal set 𝑈. That is, 

𝐴ᇱ = 𝑈 − 𝐴. 

Example 1.34:  

a. If 𝑈 = {0,1,2,3,4}, and if 𝐴 = {3,4}, then 𝐴ᇱ = {3,4}. 

b. Let 𝑈 =  {1, 2, 3, … , 12} 

𝐴 = {𝑥 | 𝑥 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 12}  

and 𝐵 =  {𝑥 | 𝑥 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖𝑛 𝑈}.  

Then, 𝐴 =  {5, 7, 8, 9, 10, 11}, 𝐵 =  {2, 4, 6, 8, 10, 12}, 

(𝐴 ∪ 𝐵) =  (8, 10}, 𝐴 ∪ 𝐵 =  {2, 4, 5, 6, … , 12}, 

𝐴 ∩ 𝐵 =  {8, 10}, and (𝐴\𝐵) =  {1, 3, 5, 7, 8, 9, 10, 11}. 

c. Let 𝑈 =  {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ}, 𝐴 =  {𝑎, 𝑒, 𝑔, ℎ} and 

𝐵 =  {𝑏, 𝑐, 𝑒, 𝑓, ℎ}. Then 

𝐴 =  {𝑏, 𝑐, 𝑑, 𝑓}, 𝐵 =  {𝑎, 𝑑, 𝑔}, 𝐵 –  𝐴 =  {𝑏, 𝑐, 𝑓}, 

𝐴 –  𝐵 =  {𝑎, 𝑔}, and (𝐴 ∪ 𝐵)ᇱ = {𝑑}.  

Find (𝐴 ∩ 𝐵)′, 𝐴 ∩ 𝐵′, 𝐴 ∪ 𝐵′. Which of these are equal? 

Theorem 1.1: For any two sets 𝐴 and 𝐵, each of the following holds. 

1. (𝐴) =  𝐴. 

2.  𝐴 =  𝑈 –  𝐴. 

3. A– B = A ∩ BA– B = AB'𝐴 –  𝐵 =  𝐴  𝐵′. 

4. (𝐴 𝐵) =  𝐴𝐵′. 

5. (𝐴 𝐵) =  𝐴𝐵′. 

6. 𝐴 ⊆ 𝐵 ⟺ 𝐵′ ⊆ 𝐴′. 
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Now we define the symmetric difference of two sets.  

Definition 1.17: The symmetric difference of two sets 𝐴 and 𝐵, denoted by 𝐴Δ𝐵, is the set  
𝐴Δ𝐵 = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴). 

Example 1.35: Let 𝑈 = {1,2,3, … ,10} be the universal set, 𝐴 = {2,4,6,8,9,10} and 𝐵 =

{3,5,7,9}. Then 𝐵 − 𝐴 = {3,5,7} and 𝐴 − 𝐵 = {2,4,6,8,10}. Thus  𝐴ΔB = {2,3,4,5,6,7,8,10}. 

Theorem 1.2: For any three sets 𝐴, 𝐵 and 𝐶, each of the following holds. 

a. 𝐴 ∪ 𝐵 =  𝐵 ∪ 𝐴.                                        ( is commutative)                   

b. 𝐴 ∩ 𝐵 =  𝐵 ∩ 𝐴.                                        ( is commutative) 

c. (𝐴 ∪ 𝐵) ∪ 𝐶 =  𝐴 ∪ (𝐵 ∪ 𝐶).                   ( is associative)      

d. (𝐴 ∩ 𝐵) ∩ 𝐶 =  𝐴 ∩ (𝐵 ∩ 𝐶).                   ( is associative) 

e. 𝐴 ∪ (𝐵 ∩ 𝐶)  =  (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶).         ( is distributive over )     

f. 𝐴 ∩ (𝐵 ∪ 𝐶)  =  (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶).          ( is distributive over 

)   

Let us prove property “e” formally. 

𝑥 ∈ 𝐴 ∪ (𝐵 ∩ 𝐶) ⟺ (𝑥 ∈ 𝐴) ∨ (𝑥 ∈ 𝐵 ∩ 𝐶)                               (definition of ) 

                            ⟺ 𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)                             (definition of ) 

⟺ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)            ( is distributive over ) 

⟺ (𝑥 ∈ 𝐴 ∪ 𝐵) ∧ (𝑥 ∈ 𝐴 ∪ 𝐶)                         (definition of ) 

⟺ 𝑥 ∈ (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)(definition of ) 

Therefore, we have 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶). 
The readers are invited to prove the rest part of theorem (1.2). 

Venn diagrams 
While working with sets, it is helpful to use diagrams, called Venn diagrams, to illustrate the 
relationships involved. A Venn diagram is a schematic or pictorial representative of the sets 
involved in the discussion. Usually sets are represented as interlocking circles, each of which is 

enclosed in a rectangle, which represents the universal set 𝑈.    
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In some occasions, we list the elements of set 𝐴 inside the closed curve representing 𝐴. 

Example 1.36: 

a. If 𝑈 =  {1, 2, 3, 4, 5, 6, 7} and 𝐴 =  {2, 4, 6}, then a Venn diagram representation 
of these two sets looks like the following. 
 

 
 

 
 
 

 
 

b. Let 𝑈 =  {𝑥 | 𝑥 is a positive integer less than 13} 

𝐴 =  {𝑥 | 𝑥 ∈ 𝑈 and 𝑥 is even} 

𝐵 =  {𝑥 | 𝑥 ∈ 𝑈 and 𝑥 is a multiple of 3}.  
A Venn diagram representation of these sets is given below. 
 

 
 
 

 
 

 
 

 
Example 1.37: Let U = The set of one digits numbers 

                       A = The set of one digits even numbers 
                       B = The set of positive prime numbers less than 10  
We illustrate the sets using a Venn diagram as follows. 
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A B   U 
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a. Illustrate 𝐴 ∩ 𝐵 by a Venn diagram 

                           
b. Illustrate A’  by a Venn diagram 

                                        
c. Illustrate A\B by using a Venn diagram 

                                    
 

 

 

 

 

 

 

 

A B   U 

:   The shaded portion 

A 

  U 

A’  :   The shaded portion 

A \ B:   The shaded portion 

A B    U 
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Now we illustrate intersections and unions of sets by Venn diagram. 

Cases Shaded is 𝐴 ∪ 𝐵 Shaded 𝐴 ∩ 𝐵 

Only some 
common elements 

             

 

𝐴 ⊆ 𝐵 

                     

 

No common 
element 

     

          

 

Exercises  

1. If 𝐵 ⊆ 𝐴, 𝐴 ∩ 𝐵ᇱ = {1,4,5} and 𝐴 ∪ 𝐵 = {1,2,3,4,5,6}, find 𝐵. 

2. Let 𝐴 = {2,4,6,7,8,9}, 

      𝐵 = {1,3,5,6,10} and  

      𝐶 ={ 𝑥: 3𝑥 + 6 = 0 or 2𝑥 + 6 = 0}. Find  

a. 𝐴 ∪ 𝐵. 

b. Is (𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶)? 

3. Suppose 𝑈 = The set of one digit numbers and  

𝐴 ={𝑥: 𝑥 is an even natural number less than or equal to 9} 

           Describe each of the sets by complete listing method: 

a. 𝐴′. 

b. 𝐴 ∩ 𝐴′. 

c. 𝐴 ∪ 𝐴′. 

d. (𝐴′)′ 

e. 𝜙 − 𝑈. 

f. 𝜙′ 

g. 𝑈′ 

A B A B 

B 

A A 

B 

B A B A 

A  B = 
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4. Suppose 𝑈 = The set of one digit numbers and  

𝐴 ={𝑥: 𝑥 is an even natural number less than or equal to 9} 
           Describe each of the sets by complete listing method: 

h. 𝐴′. 

i. 𝐴 ∩ 𝐴′. 

j. 𝐴 ∪ 𝐴′. 

k. (𝐴′)′ 

l. 𝜙 − 𝑈. 

m. 𝜙′ 

n. 𝑈′ 
5. Use Venn diagram to illustrate the following statements: 

a. (𝐴 ∪ 𝐵)ᇱ = 𝐴′ ∩ 𝐵′. 

b.(𝐴 ∩ 𝐵)ᇱ = 𝐴′ ∪ 𝐵′. 

c. If 𝐴 ⊈ 𝐵, then 𝐴\𝐵 ≠ 𝜙. 

d.𝐴 ∪ 𝐴ᇱ = 𝑈. 

6. Let 𝐴 = {5,7,8,9} and 𝐶 = {6,7,8}. Then show that (𝐴\𝐵)\𝑐 = 𝐴(𝐵\𝐶).  

7. Perform each of the following operations. 

a. 𝜙 ∩ {𝜙}  

b. {𝜙, {𝜙}} – {{𝜙}} 

c. {𝜙, {𝜙}} – {𝜙}  

d. {{{𝜙}}} –  𝜙 

8. Let 𝑈 =  {2, 3, 6, 8, 9, 11, 13, 15}, 

𝐴 = {𝑥|𝑥 is a positive prime factor of 66} 

𝐵 ={ 𝑥 ∈ 𝑈| 𝑥 is composite number } and 𝐶 =  {𝑥 ∈ 𝑈| 𝑥 –  5 ∈ 𝑈}. Then find each of 
the following. 

𝐴 ∩ 𝐵, (𝐴 ∪ 𝐵) ∩ 𝐶, (𝐴 –  𝐵) ∪ 𝐶, (𝐴 –  𝐵) –  𝐶, 𝐴 – (𝐵 –  𝐶), (𝐴 –  𝐶) – (𝐵 –  𝐴), 𝐴 ∩ 𝐵 ∩ 𝐶 
9.   Let 𝐴 ∪ 𝐵 =  {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑥, 𝑦, 𝑧} and 𝐴 ∩ 𝐵 =  {𝑏, 𝑒, 𝑦}. 

a. 𝐼𝑓 𝐵 –  𝐴 =  {𝑥, 𝑧}, then 𝐴 =  ________________________ 

b. 𝐼𝑓 𝐴 –  𝐵 = 𝜙, then 𝐵 =  _________________________ 

c. 𝐼𝑓 𝐵 =  {𝑏, 𝑒, 𝑦, 𝑧}, then 𝐴 –  𝐵 =  ____________________ 

10. Let 𝑈 =  {1, 2, … , 10}, 𝐴 = {3, 5, 6, 8, 10}, 𝐵 =  {1, 2, 4, 5, 8, 9}, 

𝐶 =  {1, 2, 3, 4, 5, 6, 8} and 𝐷 =  {2, 3, 5, 7, 8, 9}. Verify each of the following. 

a. (𝐴 ∪ 𝐵) ∪ 𝐶 =  𝐴 ∪ (𝐵 ∪ 𝐶). 

b. 𝐴 ∩ (𝐵 ∪ 𝐶 ∪ 𝐷)  =  (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) ∪ (𝐴 ∩ 𝐷). 

c. (𝐴 ∩ 𝐵 ∩ 𝐶 ∩ 𝐷) =  𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷. 
d. 𝐶 –  𝐷 =  𝐶 ∩ 𝐷. 
e. 𝐴 ∩ (𝐵 ∩ 𝐶) =  (𝐴 –  𝐵) ∪ (𝐴 –  𝐶). 
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11. Depending on question No. 10 find. 

a. 𝐴 ∆ 𝐵. 

b.  𝐶 ∆ 𝐷. 

c.  (𝐴 ∆ 𝐶)∆ 𝐷. 

d. (𝐴 ∪ 𝐵)\ (𝐴 ∆ 𝐵). 

12. For any two subsets 𝐴 and 𝐵 of a universal set 𝑈, prove that: 

a. 𝐴 ∆ 𝐵 =  𝐵 ∆ 𝐴. 

b. 𝐴 ∆ 𝐵 =  (𝐴 ∪ 𝐵) – (𝐴 ∩ 𝐵). 

c. 𝐴 ∆ 𝜙 =  𝐴. 

d. 𝐴 ∆ 𝐴 = 𝜙. 

13. Draw an appropriate Venn diagram to depict each of the following sets. 
a. U = The set of high school students in Addis Ababa. 

A = The set of female high school students in Addis Ababa. 

B = The set of high school anti-AIDS club member students in Addis Ababa. 
C = The set of high school Nature Club member students in Addis Ababa. 

b. U = The set of integers. 

A = The set of even integers. 
B = The set of odd integers. 
C = The set of multiples of 3. 

D = The set of prime numbers. 
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Chapter Two 
Functions 

 
Our everyday lives are filled with situations in which we encounter relationships between two 
sets. For example,  

 To each automobile, there corresponds a license plate number 

 To each circle, there corresponds a circumference 

 To each number, there corresponds its square 

In order to apply mathematics to a variety of disciplines, we must make the idea of a 
“relationship” between two sets mathematically precise. 
 
On completion of this chapter students will be able to: 

 understand the concept of real numbers 

 use properties of real numbers to solve problems 

 determine whether a given real number is rational number or not 

 solve linear equations and inequalities 

 solve quadratic equations and inequalities  

 understand the notion of relation and function 

 determine the domain and range of relations and functions  

 find the inverse of a relation 

 define polynomial and rational functions 

 perform the fundamental operations on polynomials 

 find the inverse of an invertible function 

 apply the theorems on polynomials to find the zeros of polynomial functions 

 apply theorems on polynomials to solve related problems 

 sketch and analyze the graphs of rational functions  

 define exponential, logarithmic, and trigonometric functions 

 sketch the graph of exponential, logarithmic, and trigonometric functions 
 use basic properties of logarithmic, exponential and trigonometric functions to solve 

problems 

In this chapter, before discussing the idea of relations and functions we first review the system of 
real numbers, linear and quadratic equations and inequalities.  
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1.1 The real number systems 
 

At the end of this section, students will be able to: 

 understand the concept of real numbers 

 use properties of real numbers to solve problems 

 determine whether a given real number is rational number or not 

In this section we will define what the real numbers are and what are their properties? To answer, 
we start with some simpler number systems. 
 

 The integers and the rational numbers 

The simplest numbers of all are the natural numbers,  

  1, 2, 3, 4, 5, 6,   

With them we can count: our books, our friends, and our money. If we adjoin their negatives  

and zero, we obtain the integers; 

  ,3,2,1,0,1,2,3,   

When we try to measure length, weight, or voltage, the integers are inadequate. They are spaced 

too far apart to give sufficient precision. Thus, we are led to consider quotients (ratios) of 

integers, numbers such as: 

 
2

16
,

2

19
,

5

21
,

8

7
,

4

3




 and 
1

17
 

Note that we included 2
16  and 1

17 , though we would normally write them as 8 and – 17, since 

they are equal to the latter by the ordinary meaning of division. We did not include 0
5  or 0

9 , 

since it is impossible to make sense out of these symbols. In fact, let us agree once and for all to 

banish division by zero from this section.  Numbers which can be written in the form n
m , where 

m  and n  are integers with 0n , are called rational numbers. 

 

Do the rational numbers serve to measure all lengths? No. This surprising fact was discovered by 

the ancient Greeks long ago. They showed that while 2  measures the hypotenuse of a right 

triangle with sides of length 1, it cannot be written as a quotient of two integers(see exercise…). 

Thus, Thus, 2  is an irrational (not rational) number. So are ,7,5,3 3  and a host of other 

numbers. 
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 The real numbers 

Consider the set of all numbers (rational and irrational) that can measure lengths, together with 

their negatives and zero. We call these numbers the real numbers. 

The set of real numbers denoted by   can be described as the union of the set of rational and 

irrational numbers. i.e  = {x : x is a rational number or an irrational number}. 

The real numbers may be viewed as labels for points along a horizontal line. There they measure 

the distance to the right or left (the directed distance) from a fixed point called the origin and 

labeled 0. Each point on the number line corresponds a unique real number and vice-versa.   

 

Most students will remember that the number system can be enlarged still more to the so-called 

complex numbers. These are numbers of the form 1 ba  , where a  and b  are real numbers.  

 The four arithmetic operations 

Give two real numbers x  and y , we may add or multiply them to obtain two new real numbers 

yx   and yx   (also written simply as xy ). The real numbers along with the operations of 

addition (+) and multiplication ( ) , obey the 11 properties listed below. Most of these properties 

are straightforward and may seem trivial. Nevertheless, we shall see that these 11 basic 

properties are quite powerful in that they are the basis for simplifying algebraic expressions. 

 

            The commutative Properties 
1. For addition: abba   
2. For multiplication: baab   

 
            The associative properties 

3. For addition: cbacba  )()(  

4. For multiplication: cabbca )()(   

 
            The distributive property 

5. acabcba  )(  or cabaacb  )(  
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Identities 
6. For addition: There is a unique number called the additive identity, represented by 0, 

which has the property that aaa  00  for all real numbers a . 
7. For multiplication: There is a unique real number called the multiplicative identity, 

represented by 1, which has the property that aaa  11  for all real numbers a . 
 
Inverses 

8. For addition: Each real number a  has a unique additive inverse, represented by a , 
which has the property that aaaa  )(0)(  

9. For multiplication: Each real number a , except 0, has a unique multiplicative inverse, 

represented by a
1 , which has the property that aa aa )(1)( 11  . 

 
            Closure properties 

10. For addition: The sum of two real numbers is a real number. 
11. For multiplication: The product of two real numbers is a real number. 

 
Subtraction and division are defined by: 
 

 )( yxyx   and yxyx 1 , where 0y . 

 
In the product ab , a  and b  are called factors, in the sum ba  , a  and b  are called terms. 
 
Example 2.1: The set of irrational numbers is not closed under addition and multiplication, 

because 0)2(2   and 41682  , which are rational numbers. 

 

 The order relation on the set of real numbers 

The nonzero real numbers separate nicely into two disjoint sets – the positive real numbers and 
the negative real numbers. This fact allows us to introduce the order relation < (read “is less 
than”) by 

xyyx   is positive 

 
We agree that yx   and xy   will mean the same thing. The order relation   (read”is less 

than or equal to”) is a first cousin of <. It is defined by  
xyyx   is positive or zero 

 
The order relation  <  has the following properties: 
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The order property 
1. Trichotomy: If x  and y  are numbers, exactly one of the following 

holds: 
                          yx   or yx   or yx   

2. Transitivity: yx   and zy   zx   

3. Addition: zyzxy   

4. Multiplication: When z  is positive, yzxzyx  , 

                           When z  is negative, yzxzyx   

 

 Intervals  

Let a and b be two real numbers such that ab, then the intervals which are subsets of R with 
end points a and b are denoted and defined as below: 

i)  bxaxba  :),(  open interval from a to b. 

ii)  bxaxba  :],[  closed interval from a to b. 

iii)  bxaxba  :],(  open-closed interval from a to b. 

iv)  bxaxba  :),[  closed-open interval from a to b. 

Exercise 2.1 
1. Simplify as much as possible: 

a) 6)128(34    c) )( 3
2

4
1

6
5   

b) )]84(23[2       d) 
8
7

4
3

2
1

8
7

4
3

2
1




 

2. Which of the following statements are true and which of them are false? 
a) The sum of any two rational numbers is rational. 
b) The sum of any two irrational numbers is irrational. 
c) The product of any two rational numbers is rational. 
d) The product of any two irrational numbers is irrational. 

3. Find the value of each of the following, if undefined, say so. 

a) 00     c) 0
0    e) 8

0  

b) 0
8     d) 08    f) 80  

4. Show that division by 0 is meaningless as follows: Suppose 0a . If ba 0 , then 

00  ba , which is a contradiction. Now find a reason why 0
0  is also meaningless. 

5. Prove each if 0a , 0b  

a) 22 baba    b) baba 11   

6. Which of the following are always correct if ba  ? 

a) 44  ba  b) ba    c) aba 2   d) baa 22   
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2.2  Equations and Inequalities: Linear and Quadratic 
 

At the end of this section, students will be able to: 
 solve linear equations and inequalities 
 solve quadratic equations and inequalities identify the notions of the common sets of 

numbers 
 

 Linear Equations and inequalities 

An equation is a symbolic statement of equality. That is, rather than writing “twice a number is 
four less than the number,” we write 42  xx . Our goal is to find the solution to a given 
equation. By solution we mean the value or values of the variable that make the algebraic 
statement true. 
 

Definition 2.1: (Linear Equation) 
 
A linear equation in one variable is an equation that can be put in the form 0 bax , where a  
and b  are constants, and 0a . 

 
Equations that have the same solutions are called equivalent equations. For example, 3 1 5x    
and 3 6x  are equivalent equations because the solution set of both equations is {2}. Our goal 
here is to take an equation and with the help of a few properties, gradually, change the given 
equation into an equivalent equation of the form ax  , where x  is the variable for which we are 
solving. These properties are: 
 

1. The addition property 
If ba  , then cbca  . That is, adding the same quantity to both sides of an 
equation will produce an equivalent equation. 
 

2. The multiplication property 
If ba  , then bcac  . That is, multiplying both sides of an equation by the same 
nonzero quantity will produce an equivalent equation. 

 
Example 2.2: 

1. Solve for x  
a) )50(3010820 xxx     b) 3(2 1) 2(1 5 ) 6 11x x x      

Solution:  
a) )50(3010820 xxx       Simplify the right hand side 

xxx 30150010820   
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xx 201500820        Applying the addition property (add x20 to both sides) 
1500840 x  

Thus, 
14

25

840

1500
x . 

Remember to check by substituting 14
25  for x  in the original equation. 

 
b) 3(2 1) 2(1 5 ) 6 11x x x           (The given equation)     

6 3 2 10 6 11x x x          (Removing parentheses by distribution)         
6 10 6 2 11 3x x x                       (Collecting like terms:  ‘variables to the left and   
                                                               numbers to the right’ )       
 10 10x                                           

     1x               (Dividing both sides by 10)   
             Therefore, the solution set (S.S) is {1}.    

2. Find the solution set of   
8 3 5

5( 2) 3( )
2 6

x
x x


       

Solution:   
5

6

8 3
5( 2) 3( )

2

x
x x


         (The given equation)   

This gives us: 
3 5

2 2
4 5 10 3x x x     

     
  
 

            

5 3

2 2
4 5 3 10x x x     

      
Using addition property       

                           
2 6x 

       
 

        Hence,   3x  .   That is, the solution set is {3}.  
 

3. A computer discount store held an end of summer sale on two types of computers. They 
collected Birr 41,800 on the sale of 58 computers. If one type sold for Birr 600 and the 
other type sold for Birr 850, how many of each type were sold? 

Solution: If we let x  to be the number of Birr 600 computers sold, then x58 = the number of 
computers that are sold for Birr 850 (since 58 were sold all together). 
Our equation involves the amount of money collected on the sale of each type of computer that 
is, the value of computers sold). Thus we have: 

  800,41)58(850600  xx , which yields 

   30x  
Hence, there were 30 computers sold at Birr 600 and 28 computers sold at 850. 
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Remark: The solution set of some equation can be the set of all rational numbers.  This is the 
case when the equation is satisfied by every rational number.  

Example 2.3:  Find the solution set of  5 2( 1) 4 3( 2)x x x      

Solution:     5 2( 1) 4 3( 2)x x x        (The given equation) 

                    5 2 2 4 3 6x x x            (Removing parentheses by distribution)  
                     3 6 3 6x x                          (Combining like terms) 

This is always true whatever the value of x is. In fact, subtracting 3x from both sides of the last 
equation we get 6=6 which is always true.   This means the given equation is satisfied if you take 
any number for x as you wish. Thus, S.S =  . 

Remark: There are also some equations which cannot be satisfied by any number. For example, 
the equation  x+10 = x  says ‘If you increase a number x by 10, the result is x itself (unchanged)’. 
Obviously, there is no such a number.  The solution set of such equation is empty set.  If you try 
to solve such equation, you end up with a false statement (false equality). For example, an 
attempt to solve  x+10 = x leads to the following:  

                        10+x  x = x  x          (Subtracting  x  from both sides of the equation) 
                              10 = 0,  which is false.    

Hence, the solution set of x+10 = x  is  (empty set).      

Example 2.4:  Find the solution set of 6 3(1 ) 2(1 5 ) 7x x x       

Solution:    6 3(1 ) 2(1 5 ) 7x x x          (The given equation)     

                   6 3 3 2 10 7x x x            (Removing parentheses by distribution) 
                         9 3 2 3x x                     (Combining like terms)       
                        9 3 3 2 3 3x x x x            (Adding 3x to both sides) 
                                 9 = 2,   which is false.                      

This means the solution set of the given equation is empty,  .    

 

Example 2.5:  A man has a daughter and a son. The man is five times older than his daughter. 
Moreover, his age is twice of the sum of the ages of his daughter and son. His daughter is 3 years 
younger than his son. How old is the man and his children?  

 

Solution:  The unknowns in the problem are age of the man, age of his daughter, and age of his 
son.  So, let m = Age of the man; d = Age of the daughter; and s = Age of the son. Then, ‘The 
man is 5 times older than his daughter’ means m=5d . Moreover, ‘Age of the man is twice the 
sum of the ages of his daughter and son’ means   m=2(d+s) . ‘His daughter is 3 years younger 

than his son’ means d = s 3.  
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 Now, from the last (3rd ) equation you can get  s = d +3.  Substitute this in the 2nd equation to get 
m=2(d +d+3) = 2(2d+3). Thais is, m=4d+6. Next substitute this in the 1st equation to get  

 4d+6 = 5d  or  6 = 5d4d=d. Hence, d= 6. From this, s = d +3 = 6+3 = 9, and  m=5d =56= 30.   
  Therefore, the age of the man is 30, age of his daughter is 6 and age of his son is 9.  
 

Definition 2.2: (Linear Inequalities) 
 
A linear inequality is an inequality that can be put in the form 0 bax , where a  and b  are 
constants with 0a . (The   symbol can be replaced with ,  or  ) 

 
To solve inequalities, we will need the following properties of inequalities. 
 

For cba ,, , if ba  , then 

1) cbca            2) ,bcac   when 0c          3) ,bcac   when 0c  

 
Thus, to produce an equivalent inequality, we may add (subtract) the same quantity to (from) 
both sides of an inequality, or multiply (divide) both sides by the same positive quantity. On the 
other hand, we must reverse the inequality symbol to produce an equivalent inequality if we 
multiply (divide) both sides by the same negative quantity. 
 
Example 2.6: 

1. Solve the linear inequality )5(2)20(85  xxx  . 

Solution:  )5(2)20(85  xxx   Simplify each side 

  10281605  xxx  
   1023160  xx   Now apply the inequality property 
   1705  x     Divide both sides by – 5  
        34x    Note that the inequality symbol is reversed 
Thus, the solution set is ]34,(}34:{  xx . 

 
Example 2.7:   Find the solution set of the inequality 3x 5(x+2)  0.  

Solution:   3x 5(x 2)  0        (The given inequality)  

                  3x 5x + 10  0        (Removing the parentheses by distribution)  

                      2x + 10  0         (Combining like terms)  

                      2x    10           (Subtracting 10 from both sides)  

                           x   10

2




         (Dividing both sides by 2 reverse the inequality)  

That is,   x  5.   Therefore, S.S = {x:  x  5}, the set of all real numbers less 5.  
The solution of an inequality is sometimes required to be only in a given domain (set). If so, a 
solution set should contain only those solutions that belong to the specified domain.  
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Example 2.8: Find the solution set of 4( 1) 13 ( 2)x x x       in the set of natural numbers, ℕ.  

Solution:   4( 1) 13 ( 2)x x x       (The given inequality)     

                  4 4 13 2x x x           (Removing parentheses by distribution) 

                     3 4 11x x                (Combining like terms; i.e., 4 3x x x    and  13+2= 11)       

                     3 11 4x x                (Collecting like terms) 

                          2 7x                      (Next, division of both sides of this by 2 reverses the              
                                                                inequality) 

                             
7

2
x  ;      i.e.,  3.5x   

Thus, the solution of the given inequality in ℕ is {1, 2, 3}.   (Recall: ℕ = {1, 2, 3, … }) 
Some inequalities may have no solution in the specified domain as in the following example.    

Example 2.9:  Find the solution set of  7 6 3 2x x     in the set of whole numbers, W. 
Solution:     7 2 3 6x x           (The given inequality)     
                   7 3 6 2x x            (Collecting like terms) 
                          4 4x                

                         4

4

x 4

4


        or  1x        

However, there is no negative whole number.  Therefore, the solution set of the given inequality 

in W is , empty set.      (Recall: W = {0, 1, 2, 3, … }  ) 

Example 2.10:   Find the solution set of the inequality 1 1 3 3

6 2 2 2
( 3)   ( 1)x x x       in ℚ.

 
Solution: The inequality involves fractional numbers. Thus, like for the case of linear equations, 
clear the denominators by multiplying both sides of the inequality by the LCM of the 
denominators.  The denominators in this equation are 6 and 2; and their LCM is 6.  Thus, 
multiply every term in both sides of the given inequality by 6. That is,    

         
1 1 3 3

6  
6 2 2 2

( 3) 6 6  6 ( 1)x x x       
             

             (The inequality is not reversed because 60)     

                3 3 9  9( 1)x x x                         (Simplifying/clear denominators)     

                       
   4 6  9 9x x                          

                        4 9   9 6x x                          (Collecting like terms)                   

                               5 15x                      (Next, division of both sides by 5)     

                                   15

5
x 


   or  3x   .    

Therefore, S.S = { x ℚ |  x  3 }. 
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 Quadratic Equations and Inequalities 

A quadratic equation is a polynomial equation in which the highest degree of the variable is 2. 

We define the standard form of a quadratic a quadratic equation as 02  cBxAx , where 
0A . 

As with linear equations, the solutions of quadratic equations are values of the variable that make 

the equation a true statement. The solutions of 02  CBxAx  are also called the roots of the 

polynomial equation 02  CBxAx . 
 

In solving the equation 02  CBxAx , if the polynomial CBxAx 2  can be factored, the 
we can use the zero product rule (which is stated below) to reduce the problem to that of solving 

two linear equations. For example, to solve the equation 062  xx , we van factor the left 
hand side to get 0)3)(2(  xx . Hence, we can conclude that 02 x  or 03 x , which 

yields 2x  or 3x . 
 

The Zero-Product Rule: If 0ba , then 0a  or 0b  
 
Another method is to apply the Square Root Theorem. 
 

The Square Root Theorem: If dx 2 , then dx  . 

 
Example 2.11: Solve the following 

a) 6104 2  xx   b) 865 2 x    c) 6)2( 2 x  

Solution: a)  6104 2  xx    Put into standard form 

  06104 2  xx   Factor the left hand side 
  0)3)(12(2  xx   Hence we have  

  012 x  or 03 x  Solving each linear equation, we get 

  2
1x  or 3x  

b) We note that there is no first-degree term, so our approach will be to apply the Square 
Root Theorem.  

865 2 x    Isolate 2x  on the left-hand side before applying the    
                                                square root theorem 

145 2 x  

5
142 x    Applying the square root theorem we get 

5
14x  
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c) Since it is in the form of a squared quantity equal to a number, we will apply the 

Square Root Theorem to get 62 x . 

Part (c) of the above example illustrates that if we can construct a perfect square binomial from a 

quadratic equation (i.e., get the equation in the form ))( 2 dpx  , then we can apply the Square 

Root Theorem and solve for x  to get dpx  . 

The method of constructing a perfect square is called completing the square. It is based on the 

fact that in multiplying out the perfect square 2)( px   , with p  a constant, we get 

   222 2)( ppxxpx   

Notice the relationship between the constant term, 2p , and the coefficient of the middle term, 

p2 : The constant term is the square of half the coefficient of the middle term. 

 

Example 2.12: Solve by completing the square: 6482 2  xx . 

Solution:  6482 2  xx   Divide both sides by 2, the coefficient of 2x  

  3242  xx   Isolate the constant term on the right-hand side 

  142  xx    Take half the middle term coefficient, square it 

                   4)4( 2
2
1  , we add 4 to both sides of the    

                                                                          equation 

  41442  xx   Factor the left hand side  

  5)2( 2 x    Solve for x  using the Square Root Theorem 

  52 x . 

 
Unlike the factoring method, all quadratic equations can be solved by completing the square. If 

we were to complete the square for the general quadratic equation 0,02  ACBxAx  , we 

would arrive at the formula given below. 

The Quadratic Formula: If 02  CBxAx  and 0A , then 
A

ACBB
x

2

42 
  

 

Example 2.13: Solve the following using the quadratic formula: xx 682  . 

Solution: Writing the equation in standard form we get, 0862  xx . By the quadratic 
formula we have: 

 173
2

1726

2

686

)1(2

)8)(1(466 2










x  

Thus, the solution set is  173,173  . 
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A quadratic inequality is in standard form if it is in the form 02  CBxAx . (We can 
replace   with ,,  or  .) 

 
If we keep in mind that 0u  means u  is positive, then solving an inequality such as 

0352 2  xx  means we are interested in finding the values of x  that will make 22x + x5 3  

positive. Or, since )3)(12(352 2  xxxx , we are looking for values of x  that make 

)3)(12(  xx   positive. For )3)(12(  xx  to be positive, the factors must be either both 

positive or both negative. To determine when this happens, we first find the values of x   for 
which )3)(12(  xx  is equal to 0; we call these the cut points of )3)(12(  xx . The cut points 

are 2
1  and 3 . 

 
Thus, our approach in solving quadratic inequalities will be primarily algebraic. After putting the 
inequality in standard form, we will determine the sign of each factor of the expression for 
various values of x . Then, we determine the solution by examining the sign of the product. This 
process is called a sign analysis. 
 

Returning to the problem 0352 2  xx , we draw a number line and examine the sign of each 
factor as x  takes on various values on the number line, especially around the cut points. 
 
Sign of 3x       + +  +  +  +  +   +  +  +  +  +  +  + 

Sign of 12 x        +  +  +  +  +  +  + 

                             
                 6543210123456            

 
The above figure illustrates that the factor 3x  is negative when 3x  and positive when 

3x . It is also shown that 12 x  is negative when 2
1x  and positive when 2

1x . Thus the 

product of the two factors is positive when 3x  and 2
1x . Therefore, the solution set is 

),()3,( 2
1  . 

 
Remark: 1. The cut points of the inequalities will break up the number line into intervals. 

2. The sign of the product does not change within an interval, i.e., if the expression is 
positive (or negative) for one value within the interval, it is positive (or negative) for all 
values within the interval. 

Example 2.14: Solve the quadratic inequality 0222  xx . 
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Solution: Since we cannot factor 222  xx , we use the quadratic formula to find that its roots 

are 31 . This gives the cut points for the polynomial 222  xx . We use the sign analysis 

(see the figure below) with the test points given. Note: 7.031&7.231  .  

Sign of 222  xx              +             0            –              0                 + 

         10x         31     1x        31     100x  

Substituting the test values – 10, 1, and 100 for x  in the expression 222  xx , we find that 

222  xx  is negative only when x  is in the interval )31,31(  . 

 
Exercise 2.2 

1. Solve the linear equations 

a) )1(2)4(32  xx    d) 
3

5
4

3

2





 x

x

x
 

b) )3(5)]2(32[3 xxx    e) 
3

112

3

6
2 


 xxxx

 

c) 5)32( 3
2

4
3  xx  

2. Solve the linear inequalities 

a) )13(24 3
2  xxx  b) )(325 5

1 xxx  c) 
4

3

3

25 


 xx
 

3. A truck carries a load of 50 boxes; some are 20 kg boxes and the rest are 25 kg boxes. If 
the total weight of all boxes is 1175 kg, how many of each type are there? 

4. The product of two numbers is 5. If their sum 2
9 , find the numbers. 

5. Solve 

a) 1572 2  xx   c) 0422  xx   e) 0563 2  xx  

b) 
3

1
3




x
x   d) 4

2

3

5

1





 xx
 

6. Solve the quadratic inequalities 

a) 02422  xx   d) 022 2  xx  

b) 2452  xx   e) 162 x  

c) 0332  xx  

7. A student was given the inequality: 4
2

3


x
. The first step the student took in solving 

this inequality was to transform it into )2(43  x . Explain what the student did wrong. 
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2.3. Review of relations and functions  
 

After completing this section, the student should be able to: 
 define Cartesian product of two sets 
 understand the notion of relation and function 
 know the difference between relation and function 
 determine the domain and range of relations and functions  
 find the inverse of a relation 

The student is familiar with the phrase ordered pair. In the ordered pair )4,2(),3,2(   and ),( ba ; 

2,2   and a  are the first coordinates while 4,3  and b  are the second coordinates.  

 

 Cartesian Product 

Given sets }4,3{A  and }9,5,4{B . Then, the set )}9,4(),5,4(),4,4(),9,3(),5,3(),4,3{(  is the 

Cartesian product of A  and B ,  and  it is denoted  by BA . 
 
Definition 2.3: Suppose A  and B  are sets. The Cartesian product of A  and B , denoted by 

BA , is the set which contains every ordered pair whose first coordinate is an element of A  
and second coordinate is an element of B , i.e. 
                    AabaBA  :),{(  and }Bb . 

 
Example 2.15: For }4,2{A  and }3,1{A , we have  

a) )}3,4(),1,4(),3,2(),1,2{( BA , and  

b) )}4,3(),2,3(),4,1(),2,1{(  AB . 

From this example, we can see that BA  and AB  are not equal. Recall that two sets are equal 
if one is a subset of the other and vice versa. To check equality of Cartesian products we need to 
define equality of ordered pairs.  
 
Definition 2.4: (Equality of ordered Pairs) 
Two ordered pairs ),( ba   and ),( dc  are equal if and only if ca   and db  . 

 
Example 2.16: Let }3,2,1{A  and },,{ cbaB  . Then,  

 )},3(),,3(),,3(),,2(),,2(),,2(),,1(),,1(),,1{( cbacbacbaBA  . 

 
Definition 2.5: (Relation) 
If A  and B  are sets, any subset of BA  is called a relation from  A into  B.     
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Suppose  R is a relation from a set A to a set  B. Then,  R A×B  and hence for each 
BAba ),( , we have either Rba ),(  or Rba ),( . If Rba ),( , we say “a is R-related (or 

simply related) to b”,  and  write aRb . If Rba ),( , we say that “a is not related to b”. 

In particular if R is a relation from a set A to itself, then we say that R is a relation on A. 

 
Example 2.17: 

1. Let }7,5,3,1{A  and }8,6{B . Let R  be the relation “less than” from A  to B . Then, 

)}8,7(),8,5(),6,5(),8,3(),6,3((),8,1(),6,1{(R . 

2. Let }5,4,3,2,1{A  and },,{ cbaB  . 

a) The following are relations from A  into B ; 

i) )},1{(1 aR   

ii) )},5(),,4(),,3(),,2{(2 acbbR   

iii) )},3(),,2((),,1{(3 cbaR   

b) The following are relations from B  to A ; 

i) )}1,(),3,{(4 baR   

ii) )}3,(),2,(),4,(),2,{(5 bacbR   

iii) )}5,{(6 bR   

Definition 2.6: Let R  be a relation from A  into B . Then,  
a) the domain of R , denoted by )(RDom ,  is the set of first coordinates of the elements of 

R , i.e 
}),(:{)( RbaAaRDom   

b) the range of R , denoted by )(RRange , is the set of second coordinates of elements of R , 

i.e 
}),(:{)( RbaBbRRange   

 
Remark: If R  is a relation form the set A  to the set B , then the set B  is called the codomain of 
the relation R . The range of relation is always a subset of the codomain. 
 
Example 2.18: 

1. The set )}10,6(),8,5(),7,4{(R  is a relation from the set }6,5,4,3,2,1{A  to the set 

]10,9,8,7,6{B . The domain of R  is }6,5,4{ , the range of R  is }10,8,7{  and the 

codomain of R  is }10,9,8,7,6{ . 

2. The set of ordered pairs )}3,5(),7,5(),3,6(),2,8{( R  is a relation between the sets 

}8,6,5{  and }7,3,2{  , where }7,6,5{  is the domain and }7,3,2{   is the range. 
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Remark:  
1. If Rba ),(  for a relation R , we say a  is related to (or paired with) b . Note that a  may 

also be paired with an element different from b . In any case, b  is called the image of a  
while a  is called the pre-image of b . 

2. If the domain and/or range of a relation is infinite, we cannot list each element 
assignment, so instead we use set builder notation to describe the relation. The situation 
we will encounter most frequently is that of a relation defined by an equation or formula. 
For example, 

},,32:),{( IRyxxyyxR   

is a relation for which the range value is 3 less than twice the domain value. Hence, 
)2,5.0(),3,0(  and )7,2(   are examples of ordered pairs that are of the assignment.  

 
Example 2.19: 

1. Let }6,4,3,2,1{A                                                                                                                   

Let R  be the relation on A  defined by aAbabaR ,,:),{(  is a factor of }b . Find the 

domain and range of R . 

Solution: We have 
 )}6,6(),4,4(),6,3(),3,3(),6,2(),4,2(),2,2(),6,1(),4,1(),3,1(),2,1(),1,1{(R . 

Then, }6,4,3,2,1{)( RDom  and }6,4,3,2,1{)( RRange . 

 
2. Let }5,4,3,2,1{A  and }67,,3,2,1{ B . 

Let xBAyxR :),{(  is cube root of y  . Find a) R       b) )(RDom  c) )(RRange  

 

Solution: We have 3333,3 1255,644,273,82,11    and 27,8,1  and 64 are in B  

whereas 125 is not in B . Thus, )}64,4(),27,3(),8,2(),1,1{(R , }4,3,2,1{)( RDom  and 

}64,27,8,1{R . 

 
Remark:  

1. A relation R  on a set A  is called  
i) a universal relation if AAR   
ii) identity relation if }:),{( AaaaR   

iii) void or empty relation if R  

2. If R is a relation from A  to B , then the inverse relation of R , denoted by 1R , is a 
relation from B  to A  and is defined as: 

}),(:),{(1 RyxxyR  . 
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Observe that )()( 1 RRangeRDom  and )()( 1 RDomRRange . For instance, if 

)}2,10(),15,9(),4,1{(R  is a relation on a set }20,,3,2,1{ A , then )}10,2(),9,15(),1,4{(1 R  

 
Example 2.20: Let R  be a relation defined on IN  by }112,,:),{(  baINbabaR .  

Find  a) R   b) )(RDom   c) )(RRange   d) 1R  
 
Solution: The smallest natural number is 1. 

 1b    911)1(2  aa  

 711)2(22  aab  

 511)3(23  aab  

 311)4(24  aab  

 111)5(25  aab  

 INaab  111)6(26  

Therefore, )}5,1(),4,3(),3,5(),2,7(),1,9{(R , }9,7,5,3,1{)( RDom , }5,4,3,2,1{)( RRange  and 

)}1,5(),3,4(),5,3(),7,2(),9,1{(1 R . 
 

 Functions 

Mathematically, it is important for us to distinguish among the relations that assign a unique 
range element to each domain element and those that do not. 
 

Definition 2.7: (Function) 
A function is a relation in which each element of the domain corresponds to exactly one 
element of the range. 

 
Example 2.21: Determine whether the following relations are functions. 

a) )}7,3(),5,3(),2,5{( R  b) {(2,4),(3,4),(6,-4)} 

Solution:  

a) Since the domain element 3 is assigned to two different values in the range, 5 and 7, it is 
not a function. 

b) Each element in the domain, }6,3,2{ , is assigned no more than one value in the range, 2 is 
assigned only 4, 3 is assigned only 4, and 6 is assigned only – 4. Therefore, it is a 
function. 

Remark: Map or mapping, transformation and correspondence are synonyms for the word 

function. If f  is a function and fyx ),( , we say x is mapped to y. 
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Definition 2.8: A relation f from A into B is called a function from A into B, denoted by  

                BAf :     or BA f  
if and only if 

(i) AfDom )(  

(ii) No element of A is mapped by f  to more than one element in B, i.e. if fyx ),(  

and fzx ),( , then zy  . 

 

Remark: 1. If to the element x of A  corresponds )( By   under the function f , then we write 
yxf )(  and y  is called the image of x under y  and x is called a pre-image of y  under f .       

      2. The symbol )(xf  is read as “ f  of x” but not “ f  times x”. 

3. In order to show that a relation f  from  A into B  is a function, we first show that the 

domain of f  is A and next we show that f  well defined or single-valued, i.e. if yx   in 

A, then )()( yfxf   in B for all Ayx , . 

Example 2.22: 

1. Let }4,3,2,1{A  and }15,11,8,6,1{B . Which of the following are functions from A  to 
B .  

a) f  defined by 8)4(,8)3(,6)2(,1)1(  ffff  

b) f  defined by 15)3(,6)2(,1)1(  fff  

c) f  defined by 6)4(,6)3(,6)2(,6)1(  ffff  

d) f  defined by 11)4(,8)3(,8)2(,6)2(,1)1(  fffff  

e) f  defined by 15)4(,11)3(,8)2(,1)1(  ffff  

Solution:  

a) f  is a function because to each element of A there corresponds exactly one element of     
B . 

b) f  is not a function because there is no element of B which correspond to 4(A). 

c) f  is a function because to each element of A there corresponds exactly one element         
    of B. In the given function, the images of all element of A are the same. 

d) f  is not a function because there are two elements of B  which are corresponding to 2.         
     In other words, the image of 2 is not unique. 

e) f  is a function because to each element of A  there corresponds exactly one element      

    of .B  
 
As with relations, we can describe a function with an equation. For example, y=2x+1 is a 
function, since each x will produce only one y . 
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2. Let }:),{( 2xyyxf  . Then, f  maps: 
 

1 to 1  -1 to 1 
2 to 4  -2 to 4 
3 to 9  -3 to 9 

 
More generally any real number x is mapped to its square. As the square of a number is unique, 
f  maps every real number to a unique number. Thus, f  is a function from   into  . 

We will find it useful to use the following vocabulary: The independent variable refers to the 
variable representing possible values in the domain, and the dependent variable refers to the 

variable representing possible values in the range. Thus, in our usual ordered pair notation ),( yx

, x is the independent variable and y  is the dependent variable. 
 

 Domain, Codomain and range of a function 

For the function BAf :  

(i) The set A  is called the domain of f  

(ii) The set B  is called the codomain of f  

(iii) The set }:)({ Axxf   of all image of elements of A  is called the range of f  

Example 2.23: 

1. Let }3,2,1{A  and }10,,3,2,1{ B . Let BAf :  be the correspondence which 

assigns to each element in A , its square. Thus, we have 9)3(,4)2(,1)1(  fff . 

Therefore, f  is a function and }3,2,1{)( fDom , }9,4,1{)( fRange  and codomain of 
f  is }10,,3,2,1{  . 

 

2. Let INBA  },9,7,6,4,2{ . Let x  and y  represent the elements in the sets A  and B , 

respectively. Let BAf :  be a function defined by Axxxf  ,1715)( . 

     The variable x  can take values 2, 4, 6, 7, 9. Thus, we have  

  152)9(,122)7(,107)6(,77)4(,4717)2(15)2(  fffff . 

 This implies that }152,122,107,77,47{)(},9,7,6,4,2{)(  fRangefDom  and codomain      

       of f is .IN  

3. Let f  be the subset of ZQ   defined by   0,,:,  qZqppf q
p

. Is f  a function? 

Solution: First we note that QfDom )( . Then, f  satisfies condition (i) in the 

definition of a function. Now,   f2,3
2 ,   f4,6

4  and 6
4

3
2   but    6

4
3
2 42 ff  . 

Thus f  is not well defined. Hence, f  is not a function from Q  to Z . 
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4. Let f  be the subset of ZZ   defined by },:),{( Znmnmmnf  . Is f  a function? 

Solution: First we show that f  satisfies condition (i) in the definition. Let x  be any 

element of Z . Then, 1 xx . Hence, fxxxx  )1,1()1,( . This implies that
)( fDomx . Thus, )( fDomZ  . However, ZfDom )(  and so ZfDom )( . Now, 

Z4  and 22144  . Thus, )14,14(   and )22,22(   are in f . Hence we find that 
2214   and )22(45)14(  ff . This implies that f  is not well defined, i.e, f  

does not satisfy condition (ii). Hence, f  is not a function from Z  to Z . 
 

5. Determine whether the following equations determine y  as a function of x , if so, find 
the domain. 

a) 53  xy  b) 
53

2




x

x
y   c) xy 2

 

 
Solution: 

a) To determine whether 53  xy  gives y  as a function of x , we need to know 
whether each x-value uniquely determines a y-value. Looking at the equation 

53  xy , we can see that once x  is chosen we multiply it by – 3 and then add 5. 

Thus, for each x there is a unique y . Therefore, 53  xy  is a function. 

b) Looking at the equation 
53

2




x

x
y  carefully, we can see that each x-value  uniquely 

determines a y-value (one x-value can not produce two different y-values). Therefore, 

53

2




x

x
y  is a function. 

 
As for its domain, we ask ourselves. Are there any values of x  that must be 

excluded? Since 
53

2




x

x
y  is a fractional expression, we must exclude any value of 

x  that makes the denominator equal to zero. We must have  

  
3

5
053  xx  

Therefore, the domain consists of all real numbers except for 
3

5
. Thus, )( fDom

}
3

5
:{ xx . 

c) For the equation xy 2
, if we choose 9x  we get 92 y , which gives 3y . In 

other words, there are two y values associated with 9x . Therefore, xy 2
 is not 

a function. 
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6. Find the domain of the function 
23 xxy  . 

 
Solution: Since y  is defined and real when the expression under the radical is non-
negative, we need x  to satisfy the inequality  

 0)3(03 2  xxxx  
This is a quadratic inequality, which can be solved by analyzing signs: 
 

Sign of 
23 xx    

30

  

 

Since we want )3(3 2 xxxx   to be non-negative, the sign analysis shows us that the 

domain is }30:{  xx  or ]3,0[ . 
 
 
Exercise 2.3 

1. Let R be a relation on the set }6,5,4,3,2,1{A  defined by }9:),{(  babaR . 

i) List the elements of R  

ii) Is 
1 RR  

2. Let R be a relation on the set }7,6,5,4,3,2,1{A  defined by 4:),{( baR   divides ba  . 

i) List the elements of R  

ii) Find  )(&)( RRangeRDom  

iii) Find the elements of 
1R  

iv) Find )(&)( 11  RRangeRDom  
 

3. Let }6,5,4,3,2,1{A . Define a relation on A  by }1:),{(  xyyxR . Write down the 

domain, codomain and range of R . Find 
1R . 

4. Find the domain and range of the relation }2:),{(  yxyx . 

5. Let }3,2,1{A  and }8,6,5,3{B . Which of the following are functions from A  to B ? 

a) )}3,3(),3,2(),3,1{(f   c) )}5,2(),8,1{(f  

b) )}6,1(),5,2(),3,1{(f   d) )}3,3(),5,2(),6,1{(f  

6. Determine the domain and range of the given relation. Is the relation a function? 

a) )}0,2(),6,4(),5,2(),3,4{(    d) )},(),1,1(),,{( 8
1

3
1

6
1

2
1   

b) )}5,1(),,6(),2,8{( 2
3     e) )}5,5(),5,4(),5,3(),5,2(),5,1(),5,0{(  

c) )}3,3(),1,1(),0,0(),1,1(),3,3{(   f) {(5,0),(5,1),(5,2),(5,3),(5,4),(5,5)} 
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7. Find the domain and range of the following functions. 

a) 
2281)( xxxf    c) 86)( 2  xxxf  

b) 
65

1
)(

2 


xx
xf   d) 









52,1

21,43
)(

xx

xx
xf  

8. Given 









1,1

1,53
)(

2 xx

xx
xf . 

Find  a) )3(f  b) )1(f   c) )6(f  
 
 

2.4  Real Valued functions and their properties 
 

After completing this section, the student should be able to: 
 

 perform the four fundamental operations on polynomials 
 compose functions to get a new function 
 determine the domain of the sum, difference, product and quotient of two functions 
 define equality of two functions 

 

Let f  be a function from set A  to set B . If B  is a subset of real number system , then f  is 

called a real valued function, and in particular if A  is also a subset of  , then BAf :  is 

called a real function. 
 

Example 2.24: 1. The function :f  defined by 73)( 2  xxxf , x  is a real 

function. 

2. The function :f  defined as xxf )(  is also a real valued function. 

 

 Operations on functions 

Functions are not numbers. But just as two numbers a  and b  can be added to produce a new 
number ba  , so two functions f  and g  can be added to produce a new function gf  . This 

is just one of  the several operations on functions that we will describe in this section. 

Consider functions f  and g  with formulas  
2

3
)(




x
xf , xxg )( . We can make a new 

function gf   by having it assign to x the value x
x



2

3
, that is, 

 x
x

xgxfxgf 



2

3
)()())((  . 
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Definition 2.9: Sum, Difference, Product and Quotient of two functions 
 
Let )(xf  and )(xg  be two functions. We define the following four functions: 

 
1. )()())(( xgxfxgf                 The sum of the two functions 

2. )()())(( xgxfxgf                 The difference of the two functions 

3. )()())(( xgxfxgf                      The product of the two functions 

4. 
)(

)(
)(

xg

xf
x

g

f









                              The quotient of the two functions (provided )0)( xg  

 
Since an x value must be an inout into both f  and g , the domain of ))(( xgf   is the set of all 

x  common to the domain of f  and g . This is usually written as 

)()()( gDomfDomgfDom  . Similar statements hold for the domains of the difference and 

product of two functions. In the case of the quotient, we must impose the additional restriction 
that all elements in the domain of g   for which 0)( xg  are excluded. 

 
Example 2.25:  

1. Let 23)( 2  xxf  and 45)(  xxg . Find each of the following and its domain 

a) ))(( xgf   b) ))(( xgf    c) ))(.( xgf   d) )(x
g

f








 

Solution:  

a)  )45()23()()())(( 2 xxxgxfxgf 253 2  xx  

b)  )45()23()()())(( 2 xxxgxfxgf 653 2  xx  

c)  )45)(23())(( 2 xxxgf 8101215 23  xxx  

d) 







)(

)(
)(

xg

xf
x

g

f

45

23 2




x

x
 

We have  
  )()()()()( gDomfDomfgDomgfDomgfDom  

 















4

5
\}0)(:{\)()( xgxgDomfDom

g

f
Dom   

 

2. Let 4 1)(  xxf  and 29)( xxg  , with respective domains ),1[   and ]3,3[ . 

Find formulas for 
g

f
gfgfgf ,,,   and 3f  and give their domains. 
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Solution: 
Formula                                                            Domain 

24 91)()())(( xxxgxfxgf                                  ]3,1[  

24 91)()())(( xxxgxfxgf                                   ]3,1[  

24 91)()())(( xxxgxfxgf                                        ]3,1[  

   
2

4

9

1

)(

)(
)(

x

x

xg

xf
x

g

f













                                                           )3,1[  

     4
3

11)()(
3

433  xxxfxf                                               ),1[   

 
There is yet another way of producing a new function from two given functions. 
 

Definition 2.10: (Composition of functions) 
 
Given two functions )(xf  and )(xg , the composition of the two functions is denoted by gf   

and is defined by: 
                        )]([))(( xgfxgf  . 

))(( xgf   is read as f"  composed with g  of "x . The domain of gf   consists of those x  s 

in the domain of g  whose range values are in the domain of f , i.e. those x  s for which )(xg  

is in the domain of f . 

 
 
Example 2.26:  

1. Suppose )},3(),,2{( qzf   and )}5,(),3,(),2,{( cbag  . The function 

))(())(( xgfxgf   is found by taking elements in the domain of g  and evaluating as 

follows: qfbgfbgfzfagfagf  )3())(())((,)2())(())((   

 
If we attempt to find ))(( cgf  we get )5(f , but 5 is not in the domain of )(xf  and so we cannot 

find ))(( cgf  . Hence, )},(),,{( qbzagf  . The figure below illustrates this situation. 

                   

g 

a 

b 

c 

   2 

Domain 
of   f 

5 

   3 z 

q 

f 

Domain of 
g 

Range of  
g 

Range of  f 
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2. Given 235)( 2  xxxf  and 34)(  xxg , find  

a) )2)(( gf   b) )2)(( fg    c) ))(( xgf     d) ))(( xfg   

Solution:  
a) ))2(()2)((  gfgf  …… First evaluate 53)2(4)2( g  

       )5( f  

       1422)5(3)5(5 2   

b) ))2(()2)(( fgfg  …….First evaluate 162)2(3)2(5)2( 2 f  

                 )16(g  

      673)16(4   

c) ))(())(( xgfxgf  ……. But 34)(  xxg  

     )34(  xf  

     2)34(3)34(5 2  xx  

     3810880 2  xx   

d) ))(())(( xfgxfg  ……. But 235)( 2  xxxf  

     )235( 2  xxg  

     3)235(4 2  xx  

     111220 2  xx   

3. Given 
1

)(



x

x
xf  and 

1

2
)(




x
xg , find 

a) ))(( xgf   and its domain  b) ))(( xfg   and its domain 

Solution: a) 
1

2

1
1

2
1

2

1

2
))((


















x
x

x
x

fxgf  . Thus, }1:{)(  xxgfDom  . 

b) 22
1

1

2
))(())(( 




 x

x

x
xfgxfg  .  Since x  must first be an input into )(xf  

and so must be in the domain of f , we see that }1:{)(  xxfgDom  . 

4. Let 
9

6
)(

2 


x

x
xf  and xxg 3)(  . Find )12)(( gf   and ))(( xfg   and its domain. 

Solution: We have 3
4

27
36)6()36())12(()12)((  ffgfgf  . 

  
3

32

93

36

9)3(

36
)3())(())((

2 








x

x

x

x

x

x
xfxgfxgf  . 

The domain of gf   is ),3()3,0[  . 
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We now explore the meaning of equality of two functions. Let BAf :  and BAg :  be two 

functions. Then, f  and g  are subsets of BA . Suppose gf  . Let x  be any element of A . 

Then, gfxfx ))(,(  and thus gxfx ))(,( . Since g  is a function and )),(,( xfx

gxgx ))(,( , we must have ).()( xgxf   Conversely, assume that )()( xfxg   for all Ax . 

Let fyx ),( . Then, )()( xgxfy  . Thus, gyx ),( , which implies that gf  . Similarly, 

we can show that fg  . It now follows that gf  . Thus two functions BAf :  and 

BAg :  are equal if and only if )()( xgxf   for all Ax . In general we have the following 

definition. 
 

Definition 2.11: (Equality of functions) 
Two functions are said to be equal if and only if the following two conditions hold: 

i) The functions have the same domain; 
ii) Their functional values are equal at each element of the domain. 

 
Example 2.27:  

1. Let }0{:  ZZf  and }0{:  ZZg  be defined by }:),{( 2 Znnnf   and 

}:),{(
2

Znnng  . Now, for all Zn , )()(
22 ngnnnf  . Thus, gf  . 

2. Let }5{\,
5

25
)(

2





 x
x

x
xf , and  xxxg ,5)( . The function f  and g  are not 

equal because ).()( gDomfDom   

Exercise 2.4 

1. For xxxf  2)(  and 
3

2
)(




x
xg , find each value: 

a) )2)(( gf    c) )3(2g   e) )1)(( fg   

b) )1(







g

f
   d) )1)(( gf    f) )3)(( gg   

2. If 2)( 3  xxf  and 
1

2
)(




x
xg , find a formula for each of the following and state its 

domain. 

a) ))(( xgf    c) )(x
f

g








 

b) ))(( xgf     d) ))(( xfg   

3. Let 2)( xxf   and xxg )( . 

a) Find ))(( xgf   and its domain. 

b) Find ))(( xfg   and its domain 
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c) Are ))(( xgf   and ))(( xfg   the same functions? Explain. 

4. Let 35)(  xxf . Find )(xg  so that 72))((  xxgf  . 

5. Let .12)(  xxf  Find )(xg  so that 13))((  xxgf  . 

6. If f  is a real function defined by 
1

1
)(





x

x
xf . Show that 

3)(

1)(3
)2(





xf

xf
xf . 

7. Find two functions f  and g  so that the given function ))(()( xgfxh  , where  

a) 3)3()(  xxh   c) 6
1

)( 
x

xh  

b) 35)(  xxh   d) 
6

1
)(




x
xh  

8. Let 
x

xgxxf
1

)(,34)(   and xxxh  2)( . Find 

a) )75( xf    c) )))3((( hgf    e) )( axf   

b) 7)(5 xf    d) )3()2()1( hgf    f) axf )(  

 

2.5  Types of functions 
 

After completing this section, the student should be able to: 
 

 define one to oneness and ontoness of a function 
 check invertibility of a function 
 find the inverse of an invertible function 

In this section we shall study some important types of functions. 
 

 One to One functions 

Definition 2.12: A function BAf :  is called one to one, often written 1 – 1, if and only 

if  for all Axx 21, , )()( 21 xfxf   implies 21 xx  . In words, no two elements of A  are 

mapped to one element of B . 

 
Example 2.28: 

1. If we consider the sets }6,,3,2,1{ A  and },8,,,,,7{ edcbaB   and if ),7,1{(f ),,2( a

),3( b , )}8,6(),,5(),,4( cb  and )},6(),8,5(),,4(),,3(),,2(),7,1{( dcbag  , then both f  and 

g  are functions from A  into B . Observe that f  is not a 1 – 1 function because 

)4()3( ff   but 43  . However, g  is a 1 – 1 function. 

 
2. Let }4,3,2,1{A  and }8,7,4,1{B . Consider the functions  
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i) BAf :  defined as 8)4(,4)3(,4)2(,1)1(  ffff  

ii) BAg :  defined as 8)4(,1)3(,7)2(,4)1(  ffff  

Then, f  is not 1 – 1, but g  is a 1 – 1 function. 

 

 Onto functions 

Definition 2.13: Let f  be a function from a set A  into a set B . Then f  is called an onto 

function(or f maps onto )B  if every element of B  is image of some element in A , i.e, 

.)( BfRange   

 
Example 2.29:  

1. Let }3,2,1{A and }5,4,1{B . The function BAf :  defined as 1)1( f , 5)2( f , 

1)3( f  is not onto because there is no element in A , whose image under f  is  4. The 

function BAg :  given by )}1,3(),5,2(),4,1{(g  is onto because each element of B  is 

the image of at least one element of A  . 
 

Note that if A  is a non-empty set, the function AAiA :  defined by xxiA )(  for all 

Ax  is a 1 – 1 function from A  onto A . Ai  is called the identity map on A . 

 

2. Consider the relation f  from Z  into Z  defined by 2)( nnf   for all Zn . Now, 

domain of f  is Z . Also, if nn  , then 22 )(nn  , i.e. )()( nfnf  . Hence, f  is well 

defined and a function. However, )1(1)1(  ff  and 11  , which implies that f  is 

not 1 – 1. For all Zn , )(nf  is a non-negative integer. This shows that a negative 

integer has no preimage. Hence, f  is not onto. Note that f  is onto },9,4,1,0{  . 

3. Consider the relation f  from Z  into Z  defined by nnf 2)(   for all Zn . As in the 

previous example, we can show that f  is a function. Let Znn ,  and suppose that 

)()( nfnf  . Then nn  22  and thus nn  . Hence, f  is 1 – 1. Since for all Zn , 

)(nf  is an even integer; we see that an odd integer has no preimage. Therefore, f  is not 

onto. 
 

 1 – 1 Correspondence 
 

Definition 2.14: A function BAf :  is said to be a 1 – 1 correspondence if f  is both 1 – 1 

and onto. 
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Example 2.30: 
1. Let }5,4,3,2,1,0{A  and }25,20,15,10,5,0{B . Suppose BAf :  given by 

xxf 5)(   for all Ax . One can easily see that every element of B  has a preimage in 

A  and hence f  is onto. Moreover, if )()( yfxf  , then yx 55  , i.e. yx  . Hence, f  

is 1 – 1. Therefore, f  is a 1 – 1 correspondence between A  and B . 

2. Let A  be a finite set. If AAf :  is onto, then it is one to one. 

Solution: Let },,,{ 21 naaaA  . Then )}(,),(),({)( 21 nafafaffRange  . Since f  is onto 

we have AfRange )( .Thus, )}(,),(),({ 21 nafafafA  , which implies that )( 1af , )( 2af , 

 , )( naf  are all distinct. Hence, ji aa   implies )()( ji afaf   for all nji  ,1 . Therefore, 

f  is 1 – 1. 

 

 Inverse of a function 

Since a function is a relation , the inverse of a function f  is denoted by 1f  and is defined by:  

  }),(:),{(1 fyxxyf   

For instance, if )}7,1(),6,3(),4,2{(f , then )}1,7(),3,6(),2,4{(1 f . Note that the inverse of a 

function is not always a function. To see this consider the function ),6,3(),4,2{(f )}4,5( . 

Then, )}5,4(),3,6(),2,4{(1 f , which is not a function.  

As we have seen above not all functions have an inverse, so it is important to determine whether 
or not a function has an inverse before we try to find the inverse. If the function does not have an 
inverse, then we need to realize that it does not have an inverse so that we do not waste our time 
trying to find something that does not exist.  
A one to one function is special because only one to one functions have inverse. If a function is 
one to one, to find the inverse we will follow the steps below:  

1. Interchange x  and y  in the equation )(xfy   

2. Solving the resulting equation for y , we will obtaining the inverse function. 

Note that the domain of the inverse function is the range of the original function and the range of 
the inverse function is the domain of the original function. 
 
Example 2.31:  

1. Given 3)( xxfy  . Find 1f  and its domain. 

Solution: We begin by interchanging x  and y , and we solve for y . 
3xy   Interchange x  and y  

3yx   Take the cube root of both sides 
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yx 3  This is the inverse of the function 

Thus, 31 )( xxf  . The domain of 1f  is the set of all real numbers. 

2. Let 
2

)(



x

x
xfy . Find )(1 xf  . 

Solution: Again we begin by interchanging x  and y , and then we solve for y . 

 
2


x

x
y   Interchange x  and y  

 
2


y

y
x   Solving for y  

 
x

x
yxyxyxxyyyx




1

2
)1(22)2(  

Thus, 
x

x
xf




1

2
)(1 . 

 
Remark: Even though, in general, we use an exponent of  1  to indicate a reciprocal, inverse 

function notation is an exception to this rule. Please be aware that )(1 xf   is not the reciprocal of 

f . That is,  

  
)(

1
)(1

xf
xf   

If we want to write the reciprocal of the function )(xf  by using a negative exponent, we 

must write 

    1)(
)(

1  xf
xf

. 

Exercise 2.5 

1. Consider the function }:),{( 2 Sxxxf   from }3,2,1,0,1,2,3{ S  into Z . Is f  one 

to one? Is it onto? 
 

2. Let }3,2,1{A . List all one to one functions from A  onto A . 

 

3. Let BAf : . Let f  be the inverse relation, i.e. })(:),{( yxfABxyf  . 

a) Show by an example that f  need not be a function. 

b) Show that f  is a function from )( fRange  into A  if and only if f  is 1 – 1. 

c) Show that f  is a function from B  into A  if and only if f  is 1 – 1 and onto. 

d) Show that if f  is a function from B  into A , then   ff 1 . 
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4. Let }10:{  xxA  and }85:{  xxB . Show that BAf :  defined by 

xxf )58(5)(   is a 1 – 1 function from A  onto B . 

 
5. Which of the following functions are one to one? 

a) :f  defined by  xxf ,4)(  

b) :f  defined by  xxxf ,16)(  

c) :f  defined by  xxxf ,7)( 2  

d) :f  defined by  xxxf ,)( 3  

e)  }7{\:f  defined by }7{\,
7

12
)( 




 x
x

x
xf  

 
6. Which of the following functions are onto? 

a) :f  defined by  xxxf ,49115)(  

b) :f  defined by  xxxf ,)(  

c) :f  defined by  xxxf ,)( 2  

d) :f  defined by  xxxf ,4)( 2  

7. Find )(1 xf   if 

a) 67)(  xxf   d) 
x

x
xf

3

4
)(


   g) 1)2()( 2  xxf  

b) 
4

92
)(




x
xf   e) 

x

x
xf

21

35
)(




   h)  
x

x
xf




1

2
)(  

c) 
x

xf
3

1)(    f) 3 1)(  xxf  

 

2.6 Polynomials, zeros of polynomials, rational functions and their graphs 

 
After completing this section, the student should be able to: 
 

 define polynomial and rational functions 
 apply the theorems on polynomials to find the zeros of polynomial functions 
 use the division algorithm to find quotient and remainder 
 apply theorems on polynomials to solve related problems 
 sketch and analyze the graphs of rational functions  

 

The functions described in this section frequently occur as mathematical models of real-life 
situations. For instance, in business the demand function gives the price per item, p , in terms of 
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the number of items sold, x . Suppose a company finds that the price p (in Birr) for its model 

GC-5 calculator is related to the number of calculators sold, x (in millions), and is given by the 

demand function .80 2xp   

The manufacturer’s revenue is determined by multiplying the number of items sold ( x ) by the 
price per item ( p ). Thus, the revenue function is  

 32 80)80( xxxxxpR   

These demand and revenue functions are examples of polynomial functions.  The major aim of 
this section is to better understand the significance of applied functions (such as this demand 
function). In order to do this, we need to analyze the domain, range, and behavior of such 
functions. 
 

 Polynomial functions 
 

Definition 2.15: A polynomial function is a function of the form       

                                 .0,01
1

1  
 n

n
n

n
n aaxaxaxay    

Each ia  is assumed to be a real number, and n  is a non-negative integer, na  is called the 

leading coefficient. Such a polynomial is said to be of degree n. 

 
Remark: 

1. The domain of a polynomial function is always the set of real numbers. 
2. (Types of polynomials) 

- A polynomial of degree 1 is called a linear function. 
- A polynomial of degree 2 is called quadratic function. 
- A polynomial of degree 3 is called a cubic function. 

        i.e .0,)( 301
2

2
3

3  aaxaxaxaxp  

 

Example 2.32: 12)( 2  xxp ,  xxxq 23)( 4  and 32)( xxf   are examples of 

polynomial functions. 
 

 Properties of polynomial functions 

 
1. The graph of a polynomial is a smooth unbroken curve. The word smooth means that the 

graph does not have any sharp corners as turning points. 
2. If p  is a polynomial of degree n , then it has at most n  zeros. Thus, a quadratic 

polynomial has at most 2 zeros. 
3. The graph of a polynomial function of degree n  can have at most 1n turning points. 

Thus, the graph of a polynomial of degree 5 can have at most 4 turning points. 
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4. The graph of a polynomial always exhibits the characteristic that as x  gets very large, 

y  gets very large. 

 

 Zeros of a polynomial 
 

The zeros of a polynomial function provide valuable information that can be helpful in sketching 
its graph. One can find the zeros by factorizing the polynomial. However, we have no general 
method for factorizing polynomials of degree greater than 2. In this subsection, we turn our 
attention to methods that will allow us to find zeros of higher degree polynomials. To do this, we 
first need to discuss about the division algorithm. 
 

Division Algorithm 
Let )(xp  and )(xd  be polynomials with 0)( xd , and with the degree of )(xd  less than or 

equal to the degree of )(xp . Then there are polynomials )(xq  and )(xR  such that  

  
remainderquotientdivisordividend

xRxqxdxp )()(.)()(  , where either 0)( xR  or the degree of )(xR  is less than degree 

of )(xd . 

 

Example 2.33: Divide 
xx

x

2

1
4

4




. 

 
Solution: Using long division we have  

18

)84(

04

)42(

02

)2(

42

10002

2

2

23

23

34

2

2342
















x

xx

xx

xx

xx

xx

xx

xxxxxx

 

This long division means 


remainderquotientdivisordividend

xxxxxx )18()42(.)2(1 224  . 

 
With the aid of the division algorithm, we can derive two important theorems that will allow us 
to recognize the zeros of polynomials.  
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If we apply the division algorithm where the divisor, )(xd , is linear (that is of the form rx  ), 

we get  

Rxqrxxp  )()()(     

 
Note that since the divisor is of the first degree, the remainder R , must be a constant. If we now 
substitute rx  , into this equation, we get     

RrqRrqrrrP  )(0)()()(  

Therefore, Rrp )( . 

 
The result we just proved is called the remainder theorem. 
 

The Remainder Theorem 

When a polynomial )(xp  of degree at least 1 is divided by rx  , then the remainder is )(rp . 

 

Example 2.34: The remainder when 13)( 23  xxxxP  is divided by 2x  is 9)2( p . 

As a consequence of the remainder theorem, if rx   is a factor of )(xp , then the remainder must 

be 0. Conversely, if the remainder is 0, then rx  , is a factor of )(xp . This is known as the 

Factor Theorem. 
 

The Factor Theorem 

rx   is a factor of )(xp  if and only if 0)( rp . 

 
The next theorem, called location theorem, allows us to verify that a zero exists somewhere 
within an interval of numbers, and can also be used to zoom in closer on a value. 
 
Location theorem 
Let f  be a polynomial function and a  and b  be real numbers such that ba  . If 

0)()( bfaf , then there is at least one zero of f  between a  and b . 

 
The Factor and Remainder theorems establish the intimate relationship between the factors of a 
polynomial )(xp  and its zeros. Recall that a polynomial of degree n can have at most n zeros. 

Does every polynomial have a zero? Our answer depends on the number system in which we are 
working. If we restrict ourselves to the set of real number system, then we are already familiar 

with the fact that the polynomial 1)( 2  xxp  has no real zeros. However, this polynomial does 

have two zeros in the complex number system. (The zeros are i  and i ). Carl Friedrich Gauss 
(1777-1855), in his doctoral dissertation, proved that within the complex number system, every 
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polynomial of degree 1  has at least one zero. This fact is usually referred to as the 

Fundamental theorem of Algebra. 
 

Fundamental Theorem of Algebra 

If )(xp  is a polynomial of degree 0n whose coefficients are complex numbers, then )(xp  

has at least one zero in the complex number system. 
 

Note that since all real numbers are complex numbers, a polynomial with real coefficients also 
satisfies the Fundamental theorem of Algebra. As an immediate consequence of the Fundamental 
theorem of Algebra, we have 
 

The linear Factorization Theorem 

If 01
1

1)( axaxaxaxp n
n

n
n  

  , where 1n  and 0na , then  

)()()()( 21 nn rxrxrxaxp   , where the ir  are complex numbers (possible real and not 

necessarily distinct). 
 

From the linear factorization theorem, it follows that every polynomial of degree 1n  has 
exactly n  zeros in the complex number system, where a root of multiplicity k  counted k  times. 
 
Example 2.35: Express each of the polynomials in the form described by the Linear 
Factorization Theorem. List each zero and its multiplicity. 

a) xxxxp 166)( 23   

b) 8103)( 2  xxxq  

c) 234 1082)( xxxxf   

Solution: 
a) We may factorize )(xp  as follows: 

))2()(8(

)2)(8(

)166(166)( 223





xxx

xxx

xxxxxxxp

 

The zeros of )(xp  are 0, 8, and – 2 each of multiplicity one. 

b) We may factorize )(xq  as follows: 

)2)(
3

4
(3

)2()43(8103)( 2





xx

xxxxxq
 

Thus, the zeros of )(xq  are 
3

4
 and 2, each of multiplicity one. 
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c) We may factorize )(xf  as follows: 

))2())(2((2

)54(21082)(
2

22234

ixixx

xxxxxxxf




 

Thus, the zeros of f(x) are 0 with multiplicity two and  i 2  and  i 2  each with multiplicity 
one. 
 
Example 2.36:  

1.  Find a polynomial )(xp  with exactly the following zeros and multiplicity. 

 
zeros multiplicity 

1  3 
2 4 
5 2 

Are there any other polynomials that give the same roots and multiplicity? 
2. Find a polynomial f (x) having the zeros described in part (a) such that f(1) = 32. 

 
Solution: 

1. Based on the Factor Theorem, we may write the polynomial as: 

          243243 )5()2()1()5()2())1(()(  xxxxxxxp   

which gives the required roots and multiplicities. 
Any polynomial of the form )(xkp , where k  is a non-zero constant will give the same 

roots and multiplicities. 

2. Based on part (1), we know that 243 )5()2()1()(  xxxkxf . Since we want 

32)( xf , we have  

4
1

243

)16)(1)(8(32

)51()21()11()1(




kk

kf
 

Thus, 243
4
1 )5()2()1()(  xxxxf . 

 
Our experience in using the quadratic formula on quadratic equations with real coefficients has 
shown us that complex roots always appear in conjugate pairs. For example, the roots of  

0522  xx  are i21  and i21 . In fact, this property extends to all polynomial equations 
with real coefficients. 
 

Conjugate Roots Theorem 

Let )(xp  be a polynomial with real coefficients. If complex number bia   (where a  and b  

are real numbers) is a zero of )(xp , then so is its conjugate bia  . 
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Example 2.37: Let .202692)( 234  xxxxxr  Given that i31  is a zero, find the other 

zero of )(xr . 

 

Solution: According to the Conjugate Roots Theorem, if  i31  is a zero, then its conjugate, 

i31  must also be a zero. Therefore, )31( ix  and )31( ix   are both factors of 

)(xr , and so their product must be a factor of )(xr . That is, )]31([ ix   )]31([ ix

422  xx is a factor of )(xr . Dividing )(xr  by 422  xx , we obtain 

).1()5()42()54)(42()( 222  xxxxxxxxxr  

Thus, the zeros of )(xr  are i31 , i31 , 5  and 1. 

 
The theorems we have discussed so far are called existence theorems because they ensure the 
existence of zeros and linear factors of polynomials. These theorems do not tell us how to find 
the zeros or the linear factors. The Linear Factorization Theorem guarantees that we can factor a 
polynomial of degree at least one into linear factors, but it does not tell us how. 
We know from experience that if )(xp  happens to be a quadratic function, then we may find the 

zeros of CBxAxxp  2)(  by using the quadratic formula to obtain the zeros 

                                 .
2

42

A

ACBB
x


  

 
The rest of this subsection is devoted to developing some special methods for finding the zeros 
of a polynomial function. 
 
As we have seen, even though we have no general techniques for factorizing polynomials of 
degree greater than 2, if we happen to know a root, say r , we can use long division to divide 

)(xp  by rx   and obtain a quotient polynomial of lower degree. If we can get the quotient 

polynomial down to a quadratic, then we are able to determine all the roots. But how do we find 
a root to start the process? The following theorem can be most helpful. 
 

The Rational Root Theorem 

Suppose that  01
1

1)( axaxaxaxf n
n

n
n  

  , where 0,1  nan  is an thn degree 

polynomial with integer coefficients. If 
q

p
 is a rational root of 0)( xf , where p  and q  have 

no common factor other than 1 , then p  is a factor of 0a  and q  is a factor of na . 
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To get a feeling as to why this theorem is true, suppose 
2

3
 is a root of                                   

001
2

2
3

3  axaxaxa .  

Then, 0
2

3

2

3

2

3
01

2

2

3

3 



















 aaaa  which implies that  

                      0
2

3

4

9

8

27
0

123  a
aaa

                   multiplying both sides by 8 

                     

)2.(..................................................8121827

)1.(..................................................8121827

0123

0123

aaaa

aaaa




 

If we look at equation (1), the left hand side is divisible by 3, and therefore the right hand side 

must also be divisible by 3. Since 8 is not divisible by 3, 0a  must be divisible by 3. From 

equation (2), 3a  must be divisible by 2. 

 

Example 2.38: Find all the zeros of the function .122332)( 23  xxxxp   

Solution: According to the Rational Root Theorem, if 
q

p
 is a rational root of the given equation, 

then p  must be a factor of 12  and q  must be a factor of 2. Thus, we have  

possible values of p : 12,6,4,3,2,1   

possible values of q : 2,1   

possible rational roots 
q

p
: 12,6,4,

2

3
,3,2,

2

1
,1   

We may check these possible roots by substituting the value in )(xp . Now 30)1( p  and 

12)1( p . Since )1(p  is negative and )1(p  is positive, by intermediate value theorem, )(xp  

has a zero between 1  and 1. Since   02
1 P , then  2

1x  is a factor of )(xp . Using long 

division, we obtain 

                 
)3)(4)((2

)2422)((122332)(

2
1

2
2
123





xxx

xxxxxxxp
 

Therefore, the zeros of p(x) are 2
1 , 4  and 3. 

 

 Rational Functions and their Graphs  
 

A rational function is a function of the form 
( )

( )
( )

n x

d x
f x    where both n(x) and d(x) are 

polynomials and 0)( xd .   
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Example 2.39: The functions 
5

3
)(




x
xf , 

4

1
)(

2 



x

x
xf  and 

xx

xxx
xf

5

12
)(

35




  are 

examples of rational function. 

Note that the domain of the rational function 
( )

( )
( )

n x

d x
f x   is }0)(:{ xdx  

 

Example 2.40: Find the domain and zeros of the function 
12

53
)(

2 



xx

x
xf . 

Solution: The values of x  for which 0122  xx  are excluded from the domain of .f Since 

)3)(4(122  xxxx , we have }4,3:{)(  xxfDom . To find the zeros of )(xf , we 

solve the equation 

                      0)(&0)(0
)(

)(
 xqxn

xd

xn
 

Therefore, to find the zeros of )(xf , we solve 053 x , giving 
3

5
x . Since 

3

5
 does not make 

the denominator zero, it is the only zero of )(xf . 

The following terms and notations are useful in our next discussion.   
Given a number a,  

 x  approaches  a from the right means x takes any value near and near to a  but x  a.  This is 

denoted by:     xa+     (read: ‘x approaches a from the right’ ).  

      For instance, x 1+   means x can be 1.001,  1.0001, 1.00001,  1.000001,  etc.  

 x  approaches a from the left means x takes any value near and near to a  but x  a.   

      This is denoted by:     xa–     (read: ‘x approaches a from the left’ ).  

      For instance, x1–   means x can be 0.99,  0.999,  0.9999,   0.9999,  etc.  

 x  (read: ‘x approaches or tends to infinity’) means the value of x  gets indefinitely larger 
and larger in magnitude (keep increasing without bound).  For instance, x can be 106, 1010,  
1012, etc.   

 x –  (read: ‘x approaches or tends to negative infinity’) means the value of x is negative 
and gets indefinitely larger and larger negative in magnitude (keep decreasing without bound).  
For instance, x can be –106,  –1010,  –1012, etc.   

The same meanings apply also for the values of a function f  if we wrote  f(x) or  f(x).    
The following figure illustrates these notion and notations.    
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              Fig. 2.1.  Graphical illustration of the idea of xa+,  f(x),  etc.     

We may also write  f(x)b  (read: ‘f(x) approaches b’) to mean the function values, f(x), 
becomes arbitrarily closer and closer to  b (i.e., approximately b) but not exactly equal to b.  For 

instance, if 
1

( )
x

f x  , then f(x)0 as x;  i.e., 
1

x
 is approximately 0 when x is arbitrarily large.   

The following steps are usually used to sketch (or draw) the graph of a rational function f(x). 

1. Identify the domain and simplify it.  

2. Find the intercepts of the graph whenever possible.  Recall the following: 

 y–intercept is the point on y-axis where the graph of y = f(x) intersects with the y-axis. At 

this point x=0.  Thus,  y = f(0),  or  (0, f(0) ) is the y-intercept if  0Dom(f).   

 x–intercept is the point on x-axis where the graph of y = f(x) intersects with the x-axis. At 
this point y=0.  Thus, x=a or (a, 0) is x-intercept if f(a)=0.  

3. Determine the asymptotes of the graph.  Here, remember the following.  

 Vertical Asymptote:  The vertical line x=a is called a vertical asymptote(VA) of f(x) if  

i)  adom(f), i.e., f  is not defined at x=a;   and  

ii) f(x)  or f(x) –  when xa+ or xa– .  In this case, the graph of f is almost 

vertically rising upward (if f(x)) or sinking downward (if f(x)) along with the 
vertical line x=a when x approaches a either from the right or from the left.  

 

Example 2.41: Consider  
1

( )
( ) ,nx a

f x


   where a  0 and n is a positive integer.  

Obviously aDom(f).  Next, we investigate the trend of the values of f(x) near a. To do this, we 
consider two cases,  when n is even or odd:  

Suppose n is even:  In this case (x – a)n  0  for all x\{a}; and since  (x – a)n 0 as xa+  or 

xa– . Hence, 
1

( )
( ) nx a

f x


   as xa+ or xa– . Therefore, x=a is a VA of f(x).  

Moreover, y=  1/an  or (0, 1/an )  is its y-intercept since  f(0)=1/an. However, it has no x-intercept 

since f(x) 0 for all x in its domain (See, Fig. 2.2 (A)).  

a 

y 

x 

y 

x   xa–      xa+ 
 

x – 

y f(x), 
asxa 

a 

y 
=f(x) 

   f(x) –, asxa+ 
  f(x) –, 
asx– 

f(x), 
asx 
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Suppose n is odd:  In this case (x – a)n 0  for all xa and 1/ (x – a)n   when xa+   as in the 

above case. Thus, x=a is its VA. However, 1/(x–a)n – when xa– since (x – a)n< 0  for xa.  
Moreover, y= –1/an  or (0, –1/an )  is its y-intercept since  f(0) = –1/an.  However, it has no x-
intercept also in this case. (See, Fig. 2.2 (B)).  

Note that in both cases,  
1

( )
( ) 0nx a

f x


  as  xor x –.  

 

Remark:  Let 
( )

( )
( )

n x

d x
f x    be a rational function. Then, 

1.  if ( ) 0d a  and ( ) 0n a  ,  then x=a is a VA of f  .    

2.  if ( ) 0 ( )d a n a  , then x=a  may or may not be a VA of f . In this case, simplify f(x) and look 

for VA of the simplest form of f.   

 Horizontal Asymptote:  A horizontal line y=b is called horizontal asymptote (HA) of f(x) if the 

value of the function becomes closer and closer to b (i.e., f(x)b)as  x  or as  x –.    

In this case, the graph of f becomes almost a horizontal line along with (or near) the line y=b 

as x and as x–.    For instance, from the above example, the HA of 
1

( )
( ) nx a

f x


 is  

y=0 (the x-axis) , for any positive integer n (See, Fig. 2.2).  
 

Remark:   A rational function 
( )

( )
( )

n x

d x
f x   has a HA only when degree(n(x)) degree(d(x)).    

In this case,  (i)   If degree(n(x)) degree(d(x)),  then  y = 0 (the x-axis) is the HA of f.  

                    (ii)  If  degree(n(x)) =degree(d(x))=n, i.e., 
1

1 1 0
1

1 1 0

( )
n n

n n
n n

n n

a x a x

b x b x

a x a
f x

b x b











  


  



,  

            then n

n

a

b
y   is the HA of f.  

n-even 

Fig. 2.2 (A) 

a 

1/an 

1/an 

x=a 
VA 

n-odd 

x=a 
VA 

a x 

y 

x 

y 

Fig. 2.2 (B) 
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 Oblique Asymptote: The oblique line y=ax+b,   a0, is called an oblique asymptote (OA) of f  
if the value of the function, f(x), becomes closer and closer to ax+b(i.e., f(x) becomes 

approximately ax+b) as either x  or x –.   In this case, the graph of f  becomes almost a 

straight line along with (or near) the oblique line y=ax+b as x and as x –.   

Note:  A rational function 
( )

( )
( )

n x

d x
f x   has an OA only when degree(n(x)) = degree(d(x)) + 1. In 

this case, using long division, if the quotient of   n(x) ÷d(x) is ax +b,   then  y=ax+b   is the OA of  
f.   

Example 2.42:  Sketch the graphs of  
2

2

2 3 2
(a)  ( )            (b)  ( )       

1 1

x x x
f x g x

x x

  
 

 
 

Solution: (a) Since x1=0  at x=1,   dom(f) = \{1}.       

 Intercepts:   y-intercept:   x=0 y=f (0) = –2.  Hence,  (0, – 2) is y-intercept. 

x-intercept:  y=0  x+2=0  x= –2. Hence,  (–2, 0) is x-intercept. 

 Asymptotes:   

 VA:   Since x1=0  atx=1 and x+20 at x=1,  x=1 is VA of f.   In fact, if x1+ ,  then 

x+2 3 but the denominator x–1 is almost 0 (but positive).  

Consequently, f(x) as  x1+.  

Moreover,  f(x) – as  x1–  (since , if  x1–  then x–1 is almost 0 but negative ) .       

           (So, the graph of f  rises up to + at the right side of x=1, and sink down to  at the left 
side of x=1)  

 HA:  Note that if you divide x+2 by x–1, the quotient is 1 and remainder is 3. Thus, 

2 3
( ) 1

1 1

x
f x

x x


  

 
.  Thus, if  x  (or x –), then 

3

1x 
0  so that f(x)1.   

Hence, y=1 is the HA of f.   

      Using these information, you can sketch the graph of f as displayed below in Fig. 2.3 (A).   

  (b)  Both the denominator and numerator are 0 at x=1. So, first factorize and simplify them:  
         x2+3x+2=(x+2)(x+1)    and    x2–1 = (x –1)( x+1) .  Therefore,  

       

2

2

3 2 ( 2)( 1
 ( )    

1

x x x x
g x

x

   
 


)

( 1)( 1x x  )
,        x –1 

                                     

2

1

x

x





.              (So,      dom(g) =  \{1, –1} )  

       This implies that only x=1 is VA.    

Hence, the graph of 
2

 ( ) ,    1,
1

x
g x x

x


  


 is exactly the same as that of 

2
( )

1

x
f x

x





 except 

that g(x)  is not defined at x= –1.   Therefore, the graph of g and its VA are the same as that of f 
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except that there should be a ‘hole’ at the point corresponding to x= –1 on the graph of g as 
shown on Fig. 2.3(B) below. 

 
 
Exercise 2.6 

1. Perform the requested divisions. Find the quotient and remainder and verify the 
Remainder Theorem by computing )(ap . 

a) Divide 485)( 2  xbyxxxp  

b) Divide 4472)( 23  xbyxxxxp  

c) Divide 11)( 4  xbyxxp  

d) Divide 132)( 25  xbyxxxp  

2. Given that 0)4( p , factor 810112)( 23  xxxxp as completely as possible. 

3. Given that 9364)( 23  xxxxr and   04
1 r , find the remaining zeros of )(xr . 

4. Given that 3 is a double zero of 9087193)( 234  xxxxxp , find all the zeros of 

)(xp . 

5. a) Write the general polynomial )(xp  whose only zeros are 1, 2 and 3, with multiplicity 

3, 2 and 1 respectively. What is its degree? 
b) Find )(xp  described in part (a) if 6)0( p . 

6. If i32  is a root of ,391452)( 23  xxxxp find the remaining zeros of p(x). 

7. Determine the rational zeros of the polynomials 

a) 1074)( 23  xxxxp  

b) 152852)( 23  xxxxp  

y=1 (HA) 

 

 

x=1 
VA                        

x=1 
 

(B)  Fig 2.3  (A)  

‘hole’ 
atx=1 
 

y=1  

2 
 

2 
 

2 2 
1  
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c) 146)( 23  xxxxp  

8. Find the domain and the real zeros of the given function. 

a) 
25

3
)(

2 


x
xf  b) 

124

3
)(

2 



xx

x
xg  c) 

xxx

x
xf

23

)3(
)(

23

2




   d) 
4

16
)(

2

2





x

x
xf  

9. Sketch the graph of  

a)
3

1
)(





x

x
xf  b) 

x

x
xf

1
)(

2 
  c) 2

1
)( 

x
xf  d) 

4
)(

2

2




x

x
xf  

10. Determine the behavior of 
3

38
)(

3





x

xx
xf  when x  is near 3. 

11. The graph of any rational function in which the degree of the numerator is exactly one 
more than the degree of the denominator will have an oblique (or slant) asymptote. 
a) Use long division to show that  

2

8
1

2

6
)(

2








x

x
x

xx
xfy  

b) Show that this means that the line 1 xy  is a slant asymptote for the graph and 

sketch the graph of )(xfy  . 

 

2.7  Definition and basic properties of logarithmic, exponential, and 
trigonometric functions and their graphs 
 

After completing this section, the student should be able to: 
 

 define exponential, logarithmic and trigonometric functions 
 understand the relationship between exponential and logarithmic functions 
 sketch the graph of exponential, logarithmic, and trigonometric functions 
 use basic properties of logarithmic, exponential and trigonometric functions to solve 

problems 
 

 Exponents and radicals 
 

Definition 2.16: For a natural number n  and a real number x , the power nx , read “ the thn  
power of x ” or  “ x  raised to n ”, is defined as follows: 

                             
xtoequaleachfactorsn

n xxxx   

In the symbol nx , x  is called the base and n  is called the exponent. 

 

For example, 322222225  . 
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Based of the definition of nx , n  must be a natural number. It does not make sense for n  to be 
negative or zero. However, we can extend the definition of exponents to include 0 and negative 
exponents. 
 

Definition 2.17: (Zero and Negative Exponents) 
Definition of zero Exponent                             Definition of Negative Exponent 

        )0(10  xx                                                   0
1

 x
x

x
n

n  

Note: 00  is undefined. 

 

As a result of the above definition, we have n
n

x
x



1
. We have the following rules of exponents 

for integer exponents: 
 
Rules for Integer Exponents 

1. mnmn xxx                                   4. nnn yxxy )(  

2. nmmn xx )(                                     5. mn
m

n

x
x

x   

3.  0







y

y

x

y

x
n

nn

 

 
Next we extend the definition of exponents even further to include rational number exponents. 
To do this, we assume that we want the rules for integer exponents also to apply to rational 
exponents and then use the rules to show us to define a rational exponent. For example, how do 

we define 2
1

a ? Consider 2
1

9 . 
 

If we apply rule 2 and square 2
1

9 , we get   999 2
1

2
1 2

 . Thus, 2
1

9  is a number that, when 

squared, yields 9. There are two possible answers: 3 and – 3, since squaring either number will 

yield 9. To avoid ambiguity, we define 2
1

a (called the principal square root of a ) as the non-

negative quantity that, when squared, yield a . Thus, 39 2
1

 . 
 

We will arrive at the definition of 3
1

a  in the same way as we did for 2
1

a . For example, if we cube 

3
1

8 , we get   888 3
3

3
1 3

 . Thus, 3
1

8  is the number that, when cubed, yields 8. Since 823   we 

have 28 3
1

 . Similarly,   327 3
1

 . Thus, we define 3
1

a (called the cube root of a ) as the 

quantity that, when cubed yields a . 
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Definition 2.18: (Rational Exponent na
1

)  

If n  is an odd positive integer, then ba n 
1

 if and only if abn   

If n  is an even positive integer and 0a , then ba n 
1

 if and only if abn   

 

We call na
1

 the principal thn  root of a . Hence, na
1

 is the real number (nonnegative when n  is 

even) that, when raised to the thn  power, yields a . Therefore, 

    416 2
1

   since 1642   

    5125 3
1

  since 125)5( 3   

  
3

1

81

1 4
1







  since 

81

1

3

1
4







  

  327 3
1

  since 2733   

   4
1

16  is not a real number 

Thus far, we have defined na
1

, where n  is a natural number. With the help of the second rule for 

exponent, we can define the expression n
m

a , where m  and n  are natural numbers and n
m  is 

reduced to lowest terms. 
 

Definition 2.19: (Rational Exponent n
m

a ) 

If na
1

 is a real number, then  mnn
m

aa
1

 (i.e. the thn  root of a raised to the thm  power) 

 
We can also define negative rational exponents: 

  0
1


a

a
a

n
m

n
m

 

 
Example 2.43: Evaluate the following 

a) 3
2

27   b) 2
1

36
   c) 5

3

)32(
  

Solution: We have  

a)   932727 2
2

3
1

3
2

  

b) 
6

1

36

1
36

2
1

2
1


 

c)   8

1

)2(

1

)32(

1

)32(

1
)32(

33
5
1

5
3

5
3
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Radical notation is an alternative way of writing an expression with rational exponents. We 

define for real number a , the thn  root of a  as follows: 
 

Definition 2.20 ( thn  root of a ): n a = na
1

, where n  is a positive integer. 

 

The number n a  is also called the principal thn  root of a . If the thn  root of a  exists, we have: 

 

 

For example, 553 3   and 3)3(4 4  . 

 

 Exponential Functions 

In the previous sections we examined functions of the form nxxf )( , where n  is a constant. 

How is this function different from xnxf )( . 

 

Definition 2.21: A function of the form xbxfy  )( , where 0b  and 1b , is called an 

exponential function. 

Example 2.44: The functions xxf 2)(  , xxg 3)(   and 
x

xh 







2

1
)(  are examples of 

exponential functions.  
 
As usual the first question raised when we encounter a new function is its domain. Since rational 
exponents are well defined, we know that any rational number will be in the domain of an 

exponential function. For example, let xxf 3)(  . Then as x  takes on the rational values ,4x  

– 2 , 2
1  and 5

4 , we have  

 8133333)4( 4 f   9
1

3
12
23)2(  f  

 33)( 2
1

2
1 f    55 4

5
4 8133)( 5

4

f  

 

Note that even though we do not know the exact values of 3  and 5 81 , we do know exactly 

what they mean. However, what about )(xf  for irrational values of x ? For instance, 

?3)2( 2 f  

 

For a  a real number  and n  a positive integer, 

        





oddisnifa

evenisnifa
an n

,

,
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We have not defined the meaning of irrational exponents. In fact, a precise formal definition of 
xb  where x  is irrational requires the ideas of calculus. However, we can get an idea of what 23  

should be by using successive rational approximations to 2 . For example, we have      

                                             415.12414.1   

Thus, it would seem reasonable to expect that 415.12414.1 333  . Since 1.414 and 1.415 are 

rational numbers, 414.13  and 415.13  are well defined, even though we cannot compute their values 

by hand. Using a calculator, we get 7328918.437276950.4 2  . If we use better 

approximations to 2 , we get 4143.124142.1 333  . Using a calculator again, we get 

7292535.437287339.4 2  . Computing 23 directly on a calculator gives 7288044.43 2  . 

This numerical evidence suggests that as x  approaches 2 , the values of x3  approach a unique 

real number that we designate by 23 , and so we will accept without proof, the fact that the 
domain of the exponential function is the set of real numbers. 
 

The exponential function xby  , where 0b  and 1b , is defined for all real values of x . 

In addition all the rules for rational exponents hold for real number exponents as well. 
 
Before we state some general facts about exponential functions , let’s see if we can determine 
what the graph of an exponential function will look like. 
 
 
Example 2.45: 

1. Sketch the graph of the function xy 2  and identify its domain and range. 

Solution: To aid in our analysis, we set up a short table of values to give us a frame of       
reference.  

                                

 
With these points in hand, we draw a smooth curve through the points obtaining the graph 

appearing above. Observe that the domain of xy 2  is IR , the graph has no x intercepts, as  

x  y  

3  
8
132   

2  
4
122   

1  
2
112   

0 120   
1 221   
2 422   
3 823   

O 

(1,2) 

1 

1 

2 

x 

y 

y = 2x 
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x , the y  values are increasing very rapidly, whereas as x , the y values are getting 

closer and closer to 0. Thus, axisx   is a horizontal asymptote, the y intercept is 1 and the 

range of xy 2  is the set of positive real numbers. 

2. Sketch the graph of 
x

xfy 







2

1
)( . 

Solution: It would be instructive to compute a table of values as we did in example 1 above (you 
are urged to do so). However, we will take a different approach. We note that 

x
x

x

xfy 





 2

2

1

2

1
)( . If xxf 2)(  , then xxf  2)( . Thus by the graphing principle for 

)( xf  , we can obtain the graph of xy  2  by reflecting the graph of xy 2  about the axisy  . 

 
 
 
 
 
 
 
 
 
Here again the axisx   is a horizontal asymptote, there is no x intercept, 1 is y intercept and 

the range is the set of positive real numbers. However, the graph is now decreasing rather than 
increasing. 
 
The following box summarizes the important facts about exponential functions and their graphs. 

 

The Exponential function xbxfy  )(  

1. The domain of the exponential function is the set of real numbers 
2. The range of the exponential function is the set of positive real numbers 

3. The graph of xby   exhibits exponential growth if 1b  or exponential decay if 

10  b . 
4. The y intercept is 1. 

5. The x intercept is a horizontal asymptote 

6. The exponential function is 1 – 1. Algebraically if yx bb  , then yx   

 
Example 2.46: Sketch the graph of each of the following. Find the domain, range, intercepts, and 
asymptotes. 

a) 13  xy   b) 13  xy   c) 39   xy  

O 

(1,2
) 

1 

      1 

     2 

x 

y 

   

1 
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Solution:  

a) To get the graph of 13  xy . We start with the graph of xy 3 , which is the basic 

exponential growth graph, and shift it up 1 unit. 
 

      

From the graph we see that  
- )( fDom  

- ),1()( fRange  

- The y intercept is 2 

- The line 1y  is a horizontal 

asymptote 

b) To get the graph of 13  xy , we start with the graph of xy 3 , and shift 1 unit to the left. 

 

         

From the graph we see that  
- )( fDom  

- ),0()( fRange  

- The y intercept is 3 

- The line 0y  is a horizontal 

asymptote 
 

c) To get the graph of 39   xy , we start with the basic exponential decay xy  9 . We 

then reflect it with respect to the axisx  , which gives the graph of xy  9 . Finally, 

we shift this graph up 3 units to get the required graph of 39   xy . 

 

10 

2 

1 

1 2 

y=3x+1 

y = 1 

1 

y=3x+1 

  9 

x 

(1,9) 

1 
      1 

y 

y = 9 x  

1 

    
9 

      
1 

x O 

(1,9) 

1 

      
1 

    9 

y 

y = 9
 

x  

1 

x 

1 

      
3 

y 

y = 9 x +3 

1 

      2 

     y = 3 
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From the graph of 39   xy , we can see that )(hDom , )3,()( hRange , the line 

3y  is a horizontal asymptote, 2 is the y intercept and 2
1x  is the x intercept. 

Remark: When the base b  of the exponential function xbxf )(  equals to the number e , 

where 7182.2e , we call the exponential function the natural exponential function. 
 

 Logarithmic Functions 

In the previous subsection we noted that the exponential function xbxf )(  (where 0b  and 

1b ) is one to one. Thus, the exponential function has an inverse function. What is the inverse 

of xbxf )( ? 

To find the inverse of xbxf )( , let’s review the process for finding an inverse function by 

comparing the process for the polynomial function 3xy   and the exponential function xy 3 . 

Keep in mind that x  is our independent variable and y  is the dependent variable and so 

whenever possible we want a function solved explicitly for y . 

 
 

To find the inverse of 3xy   To find the inverse of xy 3  
3xy         Interchange x  and y  
3yx         solve for y  

3 xy   

xy 3       Interchange x  and y  
yx 3       solve for y  

??y  

 

There is no algebraic procedure we can use to solve yx 3  for y . By introducing radical 

notations we could express the inverse of 3xy   explicitly in the form 3 xy  . In words, 

xy 3  and 3 xy   both mean exactly the same thing: y  is the number whose cube is x . 

Similarly, if we want to express yx 3  explicitly as a function of x , we need to invent a special 

notation for this. The key idea is to take the equation yx 3  and express it verbally. 
 

yx 3  means y  is the exponent to which 3 must be raised to yield x  

 
We introduce the following notation, which expresses this idea in a much more compact form. 
 

Definition 2.22: For 0b  and 1b , we write xy blog  to mean y  is the exponent to 

which b  must be raised to yield x . In other words,  

                                     xybx b
y log  
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We read xy blog  as “ y  equals the logarithm of x  to the base b ”. 

 

REMEMBER: xy blog  is an alternative way of writing ybx   

 

When an expression is written in the form ybx  , it is said to be in exponential form. When an 

expression is written in the form xy blog , it is said to be in logarithmic form. The table below 

illustrates the equivalence of the exponential and logarithmic forms. 
 

Exponential form Logarithmic form 

1642   

1624   

125
135   

66 2
1

  

170   

216log4   

416log2   

3log 125
1

5   

2
1

6 6log   

01log7   

 
Example 2.47: 

1. Write each of the following in exponential form. 

a) 2log 9
1

3    b) 4
1

16 2log   

             Solution: We have  a) 2log 9
1

3   means 9
123  . 

       b) 4
1

16 2log    means 216 4
1

  

2. Write each of the following in logarithmic form. 

a) 001.010 3   b) 927 3
2

  

Solution: We have   a) 001.010 3   means 3001.0log10   

    b) 927 3
2

  means 3
2

27 9log   

3. Evaluate each of the following. 

a) 81log3   b) 64
1

8log  

Solution:  

a) To evaluate 81log3 , we let 81log3t , and then rewrite the equation in exponential 

form, 813 t . Now, if we can express both sides in terms of the same base, we can 
solve the resulting exponential equation, as follows: 

Let  81log3t           Rewrite in exponential form 

  813 t   Express both sides in terms of the same base 
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   433 t    Since the exponential function is 1 – 1  
   4t  

 Therefore, 481log3  . 

b) We apply the same procedure as in part (a). 

Let  64
1

8logt           Rewrite in exponential form 

  64
18 t    Express both sides in terms of the same base 

   288 t   Since the exponential function is 1 – 1  
   2t  

 Therefore, 2log 64
1

8  .  

 
As was pointed out at the beginning of this subsection, logarithm notation was invented to 

express the inverse of the exponential function. Thus, xblog  is a function of x . We usually 

write xxf blog)(   rather than writing )(log)( xxf b  and use parenthesis only when needed to 

clarify the input to the log function. For example,  
 

If )4(log)( 5 xxf  , then 15log))1(4(log)1( 55 f , whereas if xxf 5log4)(  , 

then )1(log4)1( 5 f , which is undefined. 

 

Example 2.48: Given xxf 5log)(   , find  

a) )25(f      b) )( 25
1f  c) )0(f   d) )125(f  

Solution:  

a) 225log)25( 5 f  (since 2552  ) 

b) 2log)( 25
1

525
1 f  (since 25

125  ) 

c) 0log)0( 5f  is not defined  (what power of 5 will yield 0?). We say that 0 is not in the 

domain of f . 

d) )125(log)125( 5 f  is not defined (what power of 5 will yield -125?). We say that -

125 is not in the domain of f . 

Acknowledging that the logarithmic and exponential functions are inverses, we can derive a 
great deal of information about the logarithmic function and its graph from the exponential 
function and its graph. 
 
Example 2.49: Sketch the graph of the following functions. Find the domain and range of each. 

a) xy 3log  b) xy
2
1log  
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Solution: a)  Since xy 3log  is the inverse of xy 3 , we can obtain the graph of xy 3log  by 

reflecting the graph of xy 3  about the line xy  , as shown below. 

 

 
b) To get the graph of xy

2
1log , we reflect the graph of  xy 2

1  about the line xy  as 

shown below. 

 
 
Taking note of the features of the two graphs we have the following important informations 
about the graph of the log function: 

The Logarithmic Function xy blog  

1. Its domain is the set of positive real numbers 
2. Its range is the set of real numbers. 
3. Its graph exhibits logarithmic growth if 1b  and logarithmic decay if 10  b . 
4. The x  intercept is 1. There is no y intercept. 

5. The axisy   is a vertical asymptote. 

Example 2.50: 

1. Sketch the graph of )2(log1)( 3  xxf . Find the domain, range, asymptote and 

intercepts. 

Solution: We can obtain the graph of )2(log1 3  xy  by applying the graphing 

principle to shift the basic logarithmic growth graph 2 units to the right and 1 unit up. 

1 

1 

x 

y 
y = 3x 

y = x 

y = log3x 

1 

      1 

x 

y 

   

   

y=x 
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We have }2:{)(  xxfDom , )( fRange  and the graph has the line 2x  as a 

vertical asymptote. To find the intercept, we set 0y  and solve for x . Setting 0y  

and solving for x , we will obtain 3
7x . Thus, the x intercept is 3

7 . 

 
2. Find the inverse function for  

a) 43)(  xxfy  b) )2(log)( 3  xxgy  

Solution: Following the procedure for finding an inverse function, we have  

(a)   43  xy        Interchange x  and y  

       43  yx        solve explicitly for y  

       yx 34         Write in logarithmic form 

       )4(log3  xy  

      Thus, )4(log)( 3
1  xxf  

(b) )2(log3  xy     Interchange x  and y  

      )2(log3  yx    Write in logarithmic form    

      xy 32              solve explicitly for y  

      23  xy  

     Thus, 23)(1  xxg  

 
The following table contains the basic properties of logarithm: 
 

Properties of logarithm 
Assume that ub,  and v  are positive and 1b . Then 

1. vuuv bbb loglog)(log   

In words, logarithm of a product is equal to the sum of the logs of the factors. 

2. vu bbv
u

b loglog)(log   

In words, the log of a quotient is the log of the numerator minus the log of the 
denominator. 

3.   uru b
r

b loglog   

In words, the log of a power is the exponent times the log. 

4. xbxb b
x

b  log)(log  

5. xb xb log  

1 

1 

x 

y 

x= 2 

y = 1+ log3(x2) 

2 3 
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Example 2.51: 
1. Express in terms of simpler logarithms. 

a) )(log 3 yxb  b) )(log 3 yxb    c)  3log
z

xy
b  

Solution:  

a) yxyxyx bbbbb loglog3loglog)(log 33   

b) Examining the properties of logarithms, we can see that they deal with log of a 

product, quotient and power. Thus, )(log 3
3 yx   which is the log of a sum cannot be 

simplified using log properties. 
c) We have  

  )(logloglog 3
3 zxy bbz

xy
b  =   zyxzxy bbbbb log3)log(log

2

1
log3log 2

1

 . 

2. Show that 2loglog 2
1

bb  . 

Solution: We have 2log2log02log1loglog 2
1

bbbbb  . 

 
The logarithmic function was introduced without stressing the particular base chosen. However, 
there are two bases of special importance in science and mathematics, namely, 10b  and eb  . 
 
Definition 2.23: (Common Logarithm) 

xxf 10log)(   is called the common logarithm function. We write xx loglog10  . 

 
The inverse of the natural exponential function is called the natural logarithmic function and has 
its own special notation. 
 
Definition 2.24: (Natural Logarithm) 

xxf elog)(   is called the natural logarithmic function. We write xxe lnlog  . 

 
Example 2.52: 

1. Evaluate 1000log  

Solution: Let 1000loga . Then, 3)10(log1000log 3
1010 a . 

2. Find the inverse function of 1)(  xexf . 

Solution: Let      1 xey    Interchange x  and y  

                        1 yex          Solve for y  

                        yex 1   Rewrite in logarithmic form 
                        )1ln(  xy  

Thus, )1ln()(1  xxf . 
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 Trigonometric functions and their graphs 

For the functions we have encountered so far, namely polynomial, rational and exponential 
functions, as the independent variable goes to infinity the graph of each of these three functions 
either goes to infinity(very quickly) for exponential functions or approaches a finite horizontal 
asymptote. None of these functions can model the regular periodic patterns that play an 
important role in the social, biological, and physical sciences: business cycles, agricultural 
seasons, heart rhythms, and hormone level fluctuations, and tides and planetary motions. The 
basic functions for studying regular periodic behaviour are the trigonometric functions. The 
domain of the trigonometric functions is more naturally the set of all geometric angles.  
 
Angle Measurement 
 
An angle is the figure formed by two half-lines or rays with a common end point. The common 
end point is called the vertex of the angle.  
 
 
 
 
In forming the angle, one side remains fixed and the other side rotates. The fixed side is called 
the initial side and the side that rotates is called the terminal side. If the terminal side rotates in a 
counter clockwise direction, we call the angle positive angle, and if the terminal side rotates in a 
clockwise direction, we call the angle negative angle. 
   

 

    

What attribute of an angle are we trying to measure when we measure the size of an angle? A 
moment of thought will lead us to the conclusion that when we measure an angle we are trying to 
answer the question: Through what part of a complete rotation has the terminal side rotated? 

We will use degree () as the unit of measurement for angles. Recall that the measure of a full 

round angle (full circle) is 360, straight angle is 180, and right angle is 90.  
 
An alternative unit of measure for angles which will indicate their size is the radian measure. To 
see the connection between the degree measure and radian measure of an angle, let us consider 
an angle    and draw a circle of radius r  with the vertex of   at its center O . Let s  represent 
the length of the arc of the circle intercepted by  (as shown below). 
 
 

A

B 
B 
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Basic geometry tells us that the central angle   will be the same fractional part of one complete 

rotation as s  will be of the circumference of the circle. For example, if   is 10
1  of a complete 

rotation, then s  will be 10
1  of the circumference of the circle. In other words, we can set up the 

following proportion: 

   
r

s

circleofncecircumfere

s

rotationcomplete 


21
  

 
Thus, we have the following conversion formula: 


 radiansinreesin


180

deg
 

 
Example 2.53: 

1. Convert each of the following radian measures to degrees. 

a) 6
    b) 5

3  

 Solution: a) By the conversion formula, we have 


 
6

180



, which implies that 30 . 

b) Again using the conversion formula, we get 


 
5

3

180



, which implies that 108 . 

 
2. Convert to radian measures  

a) 90   b) 270  

Solution: a) Let   represent the radian measure of 90 . Using the conversion formula, we 

obtain: 




180

90





, which implies that 
2

  . 

 

b) Rather than using the conversion formula, we notice that )90(3270   . In part (a) we found 

that 
2

90


 , and so we have 
2

3
270


 . 

 

O
r 

 
s 
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To define the trigonometric functions, we will view all angles in the context of a Cartesian 
coordinate system: that is, given an angle  , we begin by putting   in standard position, 
meaning that the vertex of   is placed at the origin and initial side of   is placed along the 
positive axisx  . Thus the location of the terminal side of   will, of course, depend on the size 
of  . 
 
 
 
 
 
 
 
 
 
We then locate a point (other than the origin) on the terminal side of   and identify its 
coordinates ),( yx  and its distance to the origin, dented by r . Then, r  is positive. 

 
With  in standard position, we define the six trigonometric functions of as follows: 

Definition 2.25 
Name of function                     Abbreviation                             Definition 

Sine                                                                                         

Cosine                                                                                    

Tangent                                                                                  

Cosecant                                                                                 

Secant                                                                                     

Cotangent                                                                                  

 

Recall that the radian measure of an angle is defined as , where  is angle in radians 

 is the length of the arc intercepted by  and  is the length of the radius. Since  and  are 

both lengths, the quotient  is a pure number without any units attached. Thus, any angle can be 

interpreted as a real number. Conversely, any real number can be interpreted as an angle. Thus, 

 

 sin
r

y
sin

 cos
r

x
cos

 tan
x

y
tan

 csc
y

r
csc

 sec
x

r
sec

 cot
y

x
cot

r

s
 

s  r s r

r

s

ϴ 

X 

Y 

r 

P(x,y) 
 

X 

Y 
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we can describe the domains of the trigonometric functions in the frame work of the real number 
systems. If we let , the domain consists of all real numbers  for which  is 

defined. Since  and  is never equal to zero, the domain for  is the set of all real 

numbers. Similarly, the domain of  is also the set of all real numbers. 

 The graph of  

To analyze , we keep in mind that once we choose a real number , we draw the 

angle, in standard position, that corresponds to . To simplify our analysis, we choose the point 

 on the terminal side so that . That is,  is a point on the unit circle . 

Note that . 

 
 
 
 
 
 
 
 
 
 
As the terminal side of  moves through the first quadrant,  increases from 0 (when ) 

to 1(when ). Thus, as  increases from 0 to ,  steadily increases from 0 to 1. 

As  increases from  to ,  decreases form 1 to 0. A similar analysis reveals that 

as  increases from  to ,  decreases from 0 to – 1; and as  increases from  to 

,  increases from – 1 to 0.  
 
Based on this analysis, we have the graph of  in the interval  as show below. 

 
 

 
 
 
 
 
 

 sin)( f  sin

r

y
sin r sin

r

x
f   cos)(

siny

 sin)( f 


),( yx 1r ),( yx 122  yx

y
y


1
sin

 y 0

2
 

 2
 siny

 2
  siny

  2
3 sin  2

3

2 sin

 sin)( f ]2,0[ 

y = sin  

 

(0,1) 
(x,y) 

(1,0) 

(0,-1) 

(-1,0) 
θ 
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Since the values of  depend only on the position of the terminal side, adding or 

subtracting multiples of  to  will leave the value of  unchanged. Thus, the 

values of  will repeat every units. The complete graph of  appears 

below. 
 
 
 
 
                   
 
                      The graph of , which is called the basic sine curve. 

 

 The graph of  

Applying the same type of analysis to , we will able to get a good idea of what its 

graph looks like. The figure below shows the angle corresponding to as it increases through 
quadrant I, II, III and IV.  

Keeping in mind that , we have the following: 

1. As  increases from 0 to ,  decreases from 1 to 0. 

2. As  increases from  to ,  decreases from 0 to – 1. 

3. As  increases from  to ,  increases from – 1 to 0. 

4. As  increases from  to ,  increases from 0 to 1. 

Based on this analysis, we have the graph of  as shown below: 

 
 
 
 

 

 

 The graph of  

Since  is undefined whenever ,  is undefined whenever the terminal side of 

the angle corresponding to  falls on the . This happens for , to which we can 

 sin)( f

2   sin)( f

 sin)( f 2  sin)( f

xy sin

cosy

 cos)( f



x
x


1
cos

 2
 cosx

 2
  cosx

  2
3 cosx

 2
3 2 cosx

 cos)( f

tany

x

y
tan 0x tan

 axisy  2
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add or subtract any multiple of  that will again bring the terminal side back to the . 

Thus, domain of  is , where  is an integer. 

1. As  increases from 0 to ,  decreases from 1 to 0 and  increases from 0 to 1; 

therefore,  increases from 0 to . 

2. As  increases from  to ,  decreases from 0 to – 1  and  decreases from 1 to 0; 

therefore,  increases from  to 0. 

3. As  increases from  to ,  increases from – 1 to 0 and  decreases from 0 to – 

1; therefore,  increases from 0 to . 

4. As  increases from  to ,  increases from  to 1 and  increases from – 1 to 

0; therefore,  increases from  to 0. 

You may want to add some more specific values to this analysis. In any case, we get the 
following as the graph of the tangent function. 

 
 
 
 
 
 
 

 
 
 

Definition 2.26: (Periodic function) 
A function  is called periodic if there exists a number  such that  

for all  in the domain of . The smallest such number  is called the period of the function. 

 
A periodic function keeps repeating the same set of over and over again. The graph of 

a periodic function shows the same basic segment of its graph being repeated. In the case of sine 
and cosine functions, the period is . The period of the tangent function is . 
 

Definition 2.27: (Amplitude of a periodic function) 
The amplitude of a periodic function  is 

                       maximum value of minimum value of  

 
Thus, the amplitude of the basic sine and cosine function is 1. 

 axisy 

tan }:{ 2   n n

 2
 x y

x
ytan 

 2
  x y

x
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  2
3 x y

x
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 2
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x
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The portion of the graph of a sine or cosine function over one period is called a complete cycle 
of the graph. In other words, the minimal portion of a sine or cosine graph that keeps repeating 
itself is called a complete cycle of the graph.  
 
Definition 2.28: (Frequency of a periodic function) 
 
The number of complete cycles a sine or cosine graph makes on an interval of length equal to 

 is called its frequency. 
 
The frequency of the basic sine curve  and the basic cosine curve is 1, 

because each graph makes 1 complete cycle in the interval . 

 

If a sine function has period of (see the figure below), then the number of complete cycles its 

graph will make in an interval of length  is .  

 
 
 
 
 
 
 
 
 

Thus if a sine function has a period of , its frequency is 4 and its graph will make 4 complete 

cycles in an interval of length . 
 
Example 2.54: Sketch the graph of  and find its amplitude, period and frequency. 

 
Solution: We can obtain this graph by applying our knowledge of the basic sine graph. For the 
basic curve, we have  

      

These quadrantal values serve as guide points, which help us draw the graph. To obtain similar 
guide points for , we ask for what values of  is  

       

and we get 

                

2

xy sin xy cos
]2,0[ 

2


2 4

2

2
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2

xy 2sin

00sin  1sin 2 
 0sin  1sin 2

3  02sin 
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3𝜋

4
 

7𝜋

4
 
2𝜋 3𝜋

2
 

5𝜋

4
 

𝜋 𝜋

2
 

𝜋

4
 

Y 

X 

Thus,  will have the values 0, 1, 0, , 0 at and , respectively. The 

graph of  will thus complete one cycle in the interval , and will repeat the same 

values in the interval . 

 
 
 
 
 
 
 
 
 
From this graph we see that has an amplitude of 1, a period , and a frequency of 2. 

 
For convenience we summarize our discussion on the domains of the trigonometric functions in 
the table. 

1.  

2.  

3.  

4.  

5.  

6.  

Domain = All real numbers 
Domain = All real numbers 

Domain =  

Domain = { } 

Domain =  

Domain =  

where  is an integer 

 
We have the following trigonometric identities 

1.  

2.  

3.  

  Exercise 2.7 
 

1. Find the domain of the given function. 

a)        b)   c)  d)  

2. Sketch the graph of the given function. Identify the domain, range, intercepts, and 
asymptotes. 

a)              b)    c)   d)  

 

xy 2sin 1 ,,,,0 4
3

24
x 

xy 2sin ],0[ 
]2,[ 

xy 2sin 

xxf sin)( 
xxf cos)( 
xxf tan)( 
xxf csc)( 
xxf sec)( 
xxf cot)( 

}:{ 2  nxx 

nxx :

}:{ 2  nxx 

}:{ nxx 
n

1cossin 22  xx

xscex 22 1tan 
xx 22 csccot1 

x
xf

6

1
)(  13)(  xxg 82)(  xxh

22
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x
xf

xy  5 xy 39  xey  1 2 xey
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3. Solve the given exponential equation. 

a)             b)   c)   d)  

4. Let . Show that . 

5. Let . Show that . 

6. Let . Show that . 

7. Evaluate the given logarithmic expression (where it is defined). 

a)  c)    e)  

b)  d)    f)  

8. If , find  and the domain of . 

9. If , find  and the domain of . 

10. Show that  

11. Sketch the graph of the given function and identify the domain, range, intercepts and 
asymptotes. 

a)     b)     c)   d) 

 

12. Find the inverse of . 

13. Let . Find a function so that . 

14. Convert the given angle from radians to degrees 

a)    b)    c)  

15. Convert the given angle from degrees to radians 

a)   b)   c)  
16. Sketch the graph of  

a)   c)   e)   

b)   d)   f)  

17.  Verify the following identities: 
a)  

b)  

18. Given  and , find . 
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Chapter Three

Matrices, Determinant and Systems of Linear Equation
Matrices, which are also known as rectangular arrays of numbers or functions, are the main
tools of linear algebra. Matrices are very important to express large amounts of data in
an organized and concise form. Furthermore, since matrices are single objects, we denote
them by single letters and calculate with them directly. All these features have made matri-
ces very popular for expressing scientific and mathematical ideas. Moreover, application of
matrices are found in most scientific fields; such as economics, finance, probability theory
and statistics, computer science, engineering, physics, geometry, and other areas.

Main Objectives of this Chapter
At the end of this chapter, students will be able to:-

• Understand the notion of matrices and determinants

• Use matrices and determinants to solve system of linear equations

• Apply matrices and determinants to solve real life problems

3.1 Definition of Matrix

Consider an automobile company that manufactures two types of vehicles, Trucks and
Passenger cars in two different colors, red and blue. The company’s sales for the month of
January are 15 Trucks and 20 Passenger cars in red color, and 10 Trucks and 16 Passenger
cars in blue color. This data is presented in Table 1.

Table 1

Trucks Passenger Cars

Red 15 20

Blue 10 16

The information in the table can be given in the form of rectangular arrays of numbers as

[ C1 C2

R1 15 20

R2 10 16

]
.

In this arrangement, the horizontal and vertical lines of numbers are called rows (R1, R2)
and columns (C1, C2), respectively. The columns C1 and C2 represent the Trucks and
Passenger cars, respectively, which are sold in January. And the rows R1 and R2 represent
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the red and blue colored vehicles, respectively. An arrangement of this type is called a
matrix. Note that the above matrix has two rows and two columns. This shows us the
usefulness of matrix to organize information.

Definition 3.1 (Definition of Matrix). If m and n are positive integers, then by a
matrix of size m by n, or an m × n matrix, we shall mean a rectangular array
consisting of mn numbers, or symbols, or expressions in a boxed display consisting
of m rows and n columns. This can be denoted by



C1 C2 C3 Cn

R1 a11 a12 a13 . . . a1n
R2 a21 a22 a23 . . . a2n
R3 a31 a32 a33 . . . a3n
...

...
...

...
...

Rm am1 am2 am3 . . . amn


where (R1, R2, R3, ..., Rm) and (C1, C2, C3, ..., Cn) represent the m rows and n

columns, respectively.

Remark.

1. Note that the first suffix denotes the number of a row (or position) and the second
suffix that of a column, so that aij appears at the intersection of the i-th row and the
j-th column.

2. Matrix A of size m× n may also be expressed by

A = [aij]m×n,

where aij represents the (i, j)-th entry of the matrix [aij].

Example 3.1. The following are matrices of different size.

A =

[
a b

c d

]
is a 2× 2 matrix B =

a b c

b c d

c d e

 is 3× 3 matrix

C =


1 2

2 3

3 4

4 5

 is 4× 2 matrix D =


1

2

3

4

 is 4× 1 matrix

E =

[
a b c d

b c d e

]
is 2× 4 matrix, F =

[
b c d e

]
is 1× 4 matrix
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Definition 3.2. Matrices which are n×1 or 1×n are called vectors. Thus, the n×1 matrix

A =


a11
a21

...
a2n


is called a column vector, and the 1× n matrix

B =
[
b11 b12 . . . b1n

]
is called a row vector.

Definition 3.3 (Submatrix). Let A be an m× n matrix. A submatrix of matrix A is
any matrix of size r × s with r ≤ m and s ≤ n, which is obtained by deleting any
collection of rows and/or columns of matrix A.

Example 3.2. For the given matrix A =

1 2 3

2 3 4

3 4 5

 ,
(i)
[
1 2 3

2 3 4

]
is a submatrix of A, which is obtained by deleting the third row of A.

(ii)

1 3

2 4

3 5

 is a submatrix of A, which is obtained by deleting the second column of A.

(iii)
[
3 4

4 5

]
is a submatrix of A, which is obtained by deleting the first column and first

row of A.

Definition 3.4 (Equality of Matrices). Two matrices of the same size, A = [aij]m×n

and B = [bij]m×n, are said to be equal (and write A = B) if and only if

aij = bij, for all ij.

Example 3.3.

(a) Determine the values of a, b, c and d for which the matrices A and B are equal:

A =

[
5 4

0 2

]
, B =

[
a b

c d

]
.

Solution: By Definition 3.4, we have a11 = b11 implies a = 5, a12 = b12 implies
b = 4, a21 = b21 implies c = 0 and a22 = b22 implies d = 2.
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(b) Find the values of α and β for which the given matrices A and B are equal.

A =

[
1 2

3 −1

]
, B =

[
α− β 2

α −1

]
Solution: Similarly, we have a11 = b11 implies α− β = 1, a21 = b21 implies α = 3,
and hence β = 2.

Definition 3.5 (Zero Matrix). An m × n matrix A = [aij] is said to be the zero
matrix if aij = 0 for all ij.

Example 3.4. The following are zero matrices.

[
0 0

0 0

]
,

0 0 0

0 0 0

0 0 0

 ,

0 0

0 0

0 0

0 0

 , [0 0 0 0

0 0 0 0

]

Exercise 3.1.

1. Write out the matrix of size 3× 3 whose entries are given by xij = i+ j.

2. Write out the matrix of size 4× 4 whose entries are given by

xij =


1 if i > j

0 if i = j

−1 if i < j.

3. For the matrix A =

1 2 3

2 3 4

3 4 5

, give all the submatrices of size 2× 2.

3.2 Matrix Algebra

In this section, we discuss addition of matrices, scalar multiplication, and matrix multipli-
cation.

3.2.1 Addition and Scalar Multiplication

Addition and scalar multiplication are the basic matrix operations. To see the usefulness of
these operations, let us observe the following simple application.
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Consider again an automobile company that manufactures two types of vehicles, Trucks
and Passenger cars in two different colors, red and blue. If the sales for the months of
January and February, respectively, are given by

J =

[
15 20

10 16

]
and F =

[
12 28

20 14

]
,

then the total sales for two months can be given as follows. The total number of red Trucks
sold in two months is 15 + 12 = 27. Similarly, the total number of blue Trucks, red Pas-
senger cars and blue Passenger cars sold in the two months are given by 10 + 20 = 30,
20 + 28 = 48 and 16 + 14 = 30, respectively.

The preceding computations are examples of matrix addition. We can write the sum of two
2× 2 matrices indicating the sales of January and February as

J + F =

[
15 20

10 16

]
+

[
12 28

20 14

]
=

[
15 + 12 20 + 28

10 + 20 14 + 16

]
=

[
27 48

30 30

]
.

Definition 3.6. Let A = [aij]m×n and B = [bij]m×n be two matrices of the same
size. Then the sum of A and B, denoted by A + B, is the m × n matrix defined by
the formula

A+B = [aij + bij].

The sum of two matrices of different sizes is undefined.

Example 3.5. For the given matrices A,B,C,D compute A+B and C +D.

A =

[
a b

c d

]
, B =

[
w x

y z

]
, C =

[
1 0 4

−1 1 1

]
, D =

[
1 1 0

0 −2 3

]
Solution: Using Definition 3.6, we have

A+B =

[
a b

c d

]
+

[
w x

y z

]
=

[
a+ w b+ x

c+ y d+ z

]
and

C +D =

[
2 0 4

−1 1 1

]
+

[
1 1 0

0 −2 3

]
=

[
3 1 4

−1 −1 4

]
.
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Theorem 3.1 (Laws of Matrix Addition ). LetA,B,C be matrices of the same size
m× n, 0 the m× n zero matrix. Then

1. Closure Law of Addition: A+B is an m× n matrix.

2. Associative Law: (A+B) + C = A+ (B + C).

3. Commutative Law : A+B = B + A.

4. Identity Law : A+ 0 = A.

5. Inverse Law : A+ (−A) = 0.

Definition 3.7 (Scalar Multiplication). Let A = [aij] be an m× n matrix, and α a
scalar. Then the product of the scalar α with matrix A, denoted by αA, is defined by

αA = [αaij]m×n.

Example 3.6. Consider the automobile manufacturing company once again. Suppose the
company’s sales for the months of January and March, respectively, are given by

J =

[
15 20

10 16

]
, and M =

[
18 22

14 20

]
.

(a) If the sales of January is to be doubled in February, then the sales of February should
be

2J =

[
2(15) 2(20)

2(10) 2(16)

]
=

[
30 40

20 32

]
.

(b) If the sales of March is to be declined by 50% in April, then the sales of April should
be

(
1

2
)J =

[
1
2
(18) 1

2
(22)

1
2
(14) 1

2
(20)

]
=

[
9 11

7 10

]
.

Example 3.7. Given the matrices A and B, compute 4A and A+ (−1)B.

A =

[
1 2

3 4

]
, B =

[
2 4

1 3

]

Solution: Using Definition 3.7, we have

4A = 4

[
1 2

3 4

]
=

[
4(1) 4(2)

4(3) 4(4)

]
=

[
4 8

12 16

]
.

And, from the definitions 3.6 and 3.7, we have

A+ (−1)B =

[
1 2

3 4

]
+ (−1)

[
2 4

1 3

]
=

[
1 2

3 4

]
+

[
−2 −4
−1 −3

]
=

[
−1 −2
2 1

]
.
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From this example, we observe that the difference of two matrices A and B, which is
denoted by A−B, can be defined by the formula

A−B = A+ (−1)B = [aij − bij]m×n.

Theorem 3.2 (Laws of Scalar Multiplication). Let A,B be matrices of the same
size m× n, and α and β scalars. Then

1. Closure Law of Scalar Multiplication: αA is an m× n matrix.

2. Associative Law: α(βA) = (αβ)A.

3. Distributive Law: α(A+B) = αA+ αB.

4. Distributive Law: (α + β)A = αA+ βA.

5. Monoidal Law: 1A = A.

Example 3.8. Let

A =

[
1 2

0 1

]
, B =

[
2 0

1 1

]
, C =

[
a b

c d

]
be the given matrices. Then,

2(A+B) = 2

[
1 + 2 2 + 0

0 + 1 1 + 1

]
= 2

[
3 2

1 2

]
=

[
(2)3 (2)2

(2)1 (2)2

]
=

[
6 4

2 4

]
and

2A+ 2B =

[
(2)1 (2)2

(2)0 (2)1

]
+

[
(2)2 (2)0

(2)1 (2)1

]
=

[
2 4

0 2

]
+

[
4 0

2 2

]
=

[
6 4

2 4

]
.

Thus, we have 2(A+B) = 2A+ 2B.

Example 3.9. Solve for X in the matrix equation 2X + A = B, where

A =

[
4 0

−2 2

]
, and B =

[
6 −4
8 0

]
.

Solution: We begin by solving the equation for X to obtain

2X = B − A implies X = (
1

2
)(B − A).

Thus, we have the solution

X =
1

2

[
6− 4 −4− 0

8− (−2) 0− 2

]
=

1

2

[
2 −4
10 −2

]
=

[
1 −2
5 −1

]
.

111



3.2.2 Matrix Multiplication

An other important matrix operation is matrix multiplication. To see the usefulness of this
operation, consider the application below, in which matrices are helpful for organizing in-
formation.

A football stadium has three concession areas, located in South, North and West stands.
The top-selling items are, peanuts, hot dogs and soda. Sales for one day are given in the
first matrix below, and the prices (in dollar) of the three items are given in the second matrix
(note that the price per Peanuts, Hot dogs and Soda are given by $2.00, $3.00 and $2.75,
respectively).


Peanuts Hot dogs Sodas

South Stand 120 250 305

North Stand 207 140 419

West Stand 29 120 190

  2.00

3.00

2.75

.
To calculate the total sales of the three top-selling items at the South stand, multiply each
entry in the first row of the matrix on the left by the corresponding entry in the price column
matrix on the right and add the results. Thus, we have

120(2.00) + 250(3.00) + 305(2.75) = 1828.75$ (South stand sales).

Similarly, the sales for the other two stands are given below:

207(2.00) + 140(3.00) + 419(2.75) = 1986.25$ (North stand sales).

29(2.00) + 120(3.00) + 190(2.75) = 940.5$ (West stand sales).

The preceding computations are examples of matrix multiplication. We can write the prod-
uct of the 3× 3 matrix indicating the number of items sold and the 3× 1 matrix indicating
the selling prices as shown below.

 120 250 305

207 140 419

29 120 190

  2.00

3.00

2.75

 =

 1828.75

1986.25

940.5


The product of these matrices is the 3× 1 matrix giving the total sales for each of the three
stands.
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Definition 3.8 (Matrix Multiplication). Let A = [aij]m×n and B = [bij]n×p be two
matrices. Then the product of A and B, denoted by AB, is an m × p matrix whose
(i, j)-th entry is defined by the formula

[AB]ij =
n∑
k=1

aikbkj = ai1b1j + ai2b2j + ai3b3j + ...+ ainbnj.

In the other words, the (i, j)-th entry of the product AB is obtained by summing the
products of the elements in the i-th row of A with corresponding elements in the j-th
column of B.

The above definition can be understood as follows. If

A =
[
a11 a12 . . . a1n

]
has only one row (R1), and

B =


b11
b21
...
bn1


has only one column (C1), then product AB is given by

AB = [R1C1] =
[
a11 a12 . . . a1n

]

b11
b21
...
bn1

 = a11b11 + a12b21 + ...+ a1nbn1.

If A has m rows R1, R2, ..., Rm, and B has n columns C1, C2, ..., Cp, then the product AB
can be given by the formula

AB =


R1C1 R1C2 . . . R1Cp
R2C1 R2C2 . . . R2Cp

...
... . . .

...
RmC1 RmC2 . . . RmCp

 .
That is, the (i, j)-th entry of AB is RiCj .

Remark. The product AB of two matrices A and B is defined only if the number of
columns in A and the number of rows in B are equal.
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Example 3.10. Let A =

[
a11 a12 a13
a21 a22 a23

]
and B =

b11 b12
b21 b22
b31 b32

 be two matrices. Clearly,

the product AB is defined in this case, since the number of column of A and the number of
rows of B are equal. Thus, we have

AB =

[
R1C1 R1C2

R2C1 R2C2

]
=

[
a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32

]
.

In this example, the matrices A and B, respectively, are 2× 3 and 3× 2 matrices, whereas
the product AB is a 2× 2 matrix.

Example 3.11. Compute the product AB of the given matrices

A =
[
1 2 3

]
and B =

1 1

1 −1
1 2

 .
Solution: The product AB is defined since the number of columns in matrix A and the
number of rows in matrix B are equal. Thus, we have AB is given by

[
1 2 3

] 1 1

1 −1
1 2

 =
[
(1)(1) + (2)(1) + (3)(1) (1)(1) + (2)(−1) + (3)(2)

]
=
[
6 5

]
.

Note that the product BA is not defined in this case.

Example 3.12. Let A =

[
0 1

0 0

]
and B =

[
1 0

0 0

]
be the given matrices. Then, we have

AB =

[
0 1

0 0

] [
1 0

0 0

]
=

[
0 0

0 0

]
, and BA =

[
1 0

0 0

] [
0 1

0 0

]
=

[
0 1

0 0

]
.

In this example, we observe that both the products AB and BA are defined. This is true in
general i.e., the products AB and BA are defined for any two square matrices A and B of
the same size. For the matrices A and B given above, we have AB 6= BA. Hence, matrix
multiplication is not commutative.

Example 3.13. Consider the following diagonal matrices.

A =

a11 0 0

0 a22 0

0 0 a33

 , and B =

b11 0 0

0 b22 0

0 0 b33


The product AB is given by

AB =

a11 0 0

0 a22 0

0 0 a33

b11 0 0

0 b22 0

0 0 b33

 =

a11b11 0 0

0 a22b22 0

0 0 a33b33


114



Similarly, we have

BA =

b11a11 0 0

0 b22a22 0

0 0 b33a33

 .
In this case, we have AB = BA , and hence the given matrices A and B commute. More
generally, if A and B are any two diagonal matrices of the same size, then AB = BA.

Theorem 3.3. Matrix multiplication is associative, i.e., whenever the products are
defined, we have A(BC) = (AB)C.

From Theorem 3.3, we shall write ABC for either A(BC) or (AB)C. Also, for every
positive integer n, we shall write An for the product AAA...A (n terms).

Theorem 3.4. If all multiplications and additions make sense, the following hold for
matrices, A, B, C and α, β scalars.

1. A(αB + βC) = α(AB) + β(AC).

2. (αB + βC)A = α(BA) + β(CA) .

Exercise 3.2.

1. Find your own examples:

(i) 2× 2 matrices A and B such that A 6= 0, B 6= 0 with AB 6= BA.

(ii) 2× 2 matrices A and B such that A 6= 0, B 6= 0 but AB = 0.

(iii) 2× 2 matrix A such that A2 = I2 and yet A 6= I2 and A 6= −I2.

2. Let A =

[
−1 −1
3 3

]
. Find all 2× 2 matrices, B such that AB = 0.

3. Let A =

[
1 2

3 4

]
and B =

[
1 2

1 c

]
. Is it possible to choose c so that AB = BA? If

so, what should be the value of c?

4. Given the matrices A =

[
1 3

2 4

]
, B =

[
−1 2

0 1

]
, and C =

[
2 1

4 0

]
and α a scalar

i. Compute the products A(BC), (AB)C, and verify that A(BC) = (AB)C.

ii. Compute the products α(AB), (αA)B, A(αB)), and verify that

α(AB) = (αA)B = A(αB).
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5. Consider the automobile producer whose agency’s sales for the month of January
were given by

J =

[
15 20

10 16

]
.

Suppose that the price of a Truck is $200 and that of a Passenger car is $100. Use
matrix multiplication to find the total values of the red and blue vehicles for the
month of January.

3.3 Types of Matrices

There are certain types of matrices that are so important that they have acquired names
of their own. In this section we are going to discuss some of these matrices and their
properties.

Definition 3.9 (Square Matrix). A matrix A is said to be square if it has the same
number of rows and columns. If A has n-rows and n-columns, we call it a square
matrix of size n.

Example 3.14. The following are square matrices.

A =

[
a b

c d

]
(Square matrix of size 2)

B =

1 2 −1
0 1 3

4 2 −2

 (Square matrix of size 3)

C =


c11 c12 . . . c1n
c21 c22 . . . c2n
...

... . . . ...
cn1 cn2 . . . cnn

 (Square matrix of size n)

Definition 3.10 (Identity Matrix). A square matrix A = [aij]n×n is called an iden-
tity matrix if

aij =

{
1, if i = j

0, otherwise

and it is denoted by In.

Example 3.15. The following are identity matrices.

I2 =

[
1 0

0 1

]
(Identity matrix of size 2)
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I3 =

1 0 0

0 1 0

0 0 1

 (Identity matrix of size 3)

In =


1 0 . . . 0

0 1 . . . 0
...

... . . . ...
0 0 . . . 1

 (Identity matrix of size n)

Definition 3.11 (Diagonal Matrix). A square matrix D = [dij]n×n is said to be
diagonal if dij = 0 whenever i 6= j. Less formally, D is said to be diagonal when all
the entries off the main diagonal are 0.

Example 3.16. The following are diagonal matrices.

D =

[
1 0

0 1

]
(Diagonal matrix of size 2)

D =

2 0 0

0 4 0

0 0 5

 (Diagonal matrix of size 3)

D =

0 0 0

0 3 0

0 0 −2

 (Diagonal matrix of size 3)

D =

0 0 0

0 0 0

0 0 0

 (Diagonal matrix of size 3)

Note that the identity matrix is the special case of diagonal matrix where all the entries in
the main diagonal are 1.

Definition 3.12 (Scalar Matrix). A diagonal matrix in which all diagonal entries
are equal is called a scalar matrix.

Example 3.17. The following are scalar matrices.

(a)

[
3 0

0 3

]
(b)

2 0 0

0 2 0

0 0 2

 (c)

1 0 0

0 1 0

0 0 1


Definition 3.13 (Triangular Matrix). A square matrix A = [aij]n×n is said to be
lower triangular if and only if aij = 0 whenever i < j. A is said to be upper
triangular if and only if aij = 0 whenever i > j.
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Example 3.18.

(i)

3 2 1

0 2 7

0 0 3

 ,
0 −1 1

0 0 0

0 0 0

 ,
0 0 0

0 4 0

0 0 0

 (Upper triangular matrices).

(ii)

 3 0 0

1 2 0

−2 4 3

 ,
0 0 0

1 0 0

0 2 0

 ,
1 0 0

0 2 0

0 0 3

 (Lower triangular matrices).

Remark.

(a) In the lower triangular matrix all the entries above the main diagonal are zero, whereas
in the upper triangular matrix all the entries below the main diagonal are zero.

(b) Any diagonal matrix is both upper and lower triangular.

Definition 3.14 (Transpose of Matrix). Let A = [aij] be an m×n matrix . Then by
the transpose of A we mean the n ×m matrix, denoted by At, whose (i, j)-th entry
is the (j, i)-th entry of A. More precisely, if A = [aij]m×n, then At = [aji]n×m. That
is,

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . .

...
am1 am2 . . . amn

 , then At =


a11 a21 . . . am1

a12 a22 . . . am2

...
... . . .

...
a1n a2n . . . anm

 .

Note that the k-th row of matrix A becomes k-th column of At, and the k-th column of A
becomes k-th row of At.

Example 3.19. Compute the transposes of the following matrices.

A =

[
1 −1 −1
1 2 3

]
, B =

2 1 3

1 5 −3
3 −3 7


Solution: First let us consider matrix A. Now, row 1 of matrix A becomes column 1 of At,
and row 2 of A becomes column 2 of At. Thus, we have

At =

 1 1

−1 2

−1 3

 .
Similarly,

Bt =

2 1 3

1 5 −3
3 −3 7

 .
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Definition 3.15 (Symmetric Matrix). A square matrix A is said to be Symmetric if
A = At.

Example 3.20. Distinguish whether the given matrix is symmetric or not.

(a) A =

2 1 3

1 5 −3
3 −3 7

 (b) B =

1 1 3

1 2 2

3 2 3


Solution:

(a) For the matrix A =

 0 1 3

−1 0 2

−3 −2 0

, At =

0 −1 −31 0 −2
3 2 0

. Thus, we have A 6= At,

and hence A is not symmetric.

(b) For the matrix B =

1 1 3

1 2 2

3 2 3

, Bt =

1 1 3

1 2 2

3 2 3

. Thus, we have B = Bt, and

hence B is symmetric.

Theorem 3.5 (Properties of Matrix Transpose). When the relevant sums and prod-
ucts are defined, and α is a scalar. Then

1. (At)t = A.

2. (A+B)t = At +Bt.

3. (αA)t = α(At).

3. (AB)t = BtAt.

Exercise 3.3.

For the given matrices A =

[
1 −1
3 2

]
, and B =

[
3 −2
0 1

]
:

(a) Show that (At)t = A.

(b) Show that (A+B)t = At +Bt.

(c) Show that (4A)t = 4(At).

(d) Show that(AB)t = BtAt.
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3.4 Elementary row operations

Elementary row operations are useful to find the rank of a matrix (see Section 3.6), to com-
pute the determinants of matrices (see Section 3.7), and to find the inverse of a matrix (see
Section 3.8). Furthermore, elementary row operations are widely used in solving systems
of linear equations (see Section 3.9).

In this section, we introduce the elementary row operations and apply these operations to
transform the given matrix into different form.

Definition 3.16 (Elementary Row Operations).
Let A be an m× n matrix. The following are known as elementary row operations.

1. Interchanging two rows: Ri ↔ Rj .(Rule of Interchanging)

2. Multiplying a row by a nonzero scalar: Ri → αRi (α is a nonzero scalar).
(Rule of Scaling)

3. Adding a multiple of one row to another: Ri → Ri + αRj (α is a nonzero
scalar). (Rule of Replacement)

Example 3.21. Use elementary row operations to transform the given matrix A into, (a) an
upper triangular matrix, (b) an identity matrix.

A =

3 12 6

1 1 −1
1 2 3


Solution: Consider the given matrix A:

(a) First let us transform the matrix A into an upper triangular. This can be done as fol-
lows:

A =

3 12 6

1 1 −1
1 2 3

 R1 → (1
3
)R1

1 4 2

1 1 −1
1 2 3

(Scaling R1)

R2 → R2 + (−1)R1, R3 → R3 + (−1)R1

1 4 2

0 −3 −3
0 −2 1

 (Replacing R2 and R3)

R2 → (−1
3
)R2

1 4 2

0 1 1

0 −2 1

 (Scaling R2)

R3 → R3 + 2R2

1 4 2

0 1 1

0 0 3

(Replacing R3)
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Hence, the matrix

1 4 2

0 1 1

0 0 3

 is an upper triangular, which is obtained from A by

elementary row operations.

(b) To transform the matrix A into a diagonal matrix, we simply change all the entries
above the main diagonal into zeros and the entries in the main diagonal into 1. Let
us denote the above upper triangular matrix by B. Then we have

B =

1 4 2

0 1 1

0 0 3

 R3 → (1
3
)R3

1 4 2

0 1 1

0 0 1

 (Scaling R3)

R2 → R2 + (−1)R3, R1 → R1 + (−2)R3

1 4 0

0 1 0

0 0 1

 (Replacing R1 and R2)

R1 → R1 + (−4)R2

1 0 0

0 1 0

0 0 1

 (Replacing R1). Thus, I3 =

1 0 0

0 1 0

0 0 1

 is the

identity matrix obtained from A.

Definition 3.17. Two matrices are said to be raw equivalent if one can be obtained
from the other by a sequence of elementary row operations.

Example 3.22. Let A,B, I3 be the matrices in Example 3.21. Then, A is row equivalent
to both B and the identity matrix I3. Also the matrix B is row equivalent to the identity
matrix I3.

Exercise 3.4.

1. Given the matrix A =

[
4 3

2 1

]
, use elementary row operations to find the lower trian-

gular matrix which are row equivalent to A.

2. Given the matrix B =

0 1 1

1 0 1

1 1 0

, use elementary row operations to find an identity

matrix which is row equivalent to B.

3.5 Row Echelon Form and Reduced Row Echelon Form of a Matrix

In order to find the rank, or to compute the inverse of a matrix, or to solve a linear system,
we usually write the matrix either in its row echelon form or reduced row echelon form.
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Definition 3.18. An m × n matrix is said to be in echelon form (or row echelon
form) if the following conditions are satisfied:

1. All nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading entry of
the row above it. (A leading entry refers to the left most nonzero entry in a
nonzero row)

3. All entries in a column below a leading entry are zeros.

If a matrix in row echelon form satisfies the following additional conditions, then it
is in reduced echelon form (or reduced row echelon form)

4. The leading entry in each nonzero row is 1.

5. Each leading 1 is the only nonzero entry in its column.

A matrix in row echelon form is said to be in reduced row echelon when every
column that has a leading 1 has zeros in every position above and below the leading
entry.

Example 3.23. The given matrices A,B,C,D are in row echelon form

A =

1 −1 0

0 5 0

0 0 1

 , B =

4 0 0

0 0 0

0 0 0

 , C =

[
1 0 5 2

0 0 1 3

]
, D =

1 2 0

0 5 1

0 0 0


and the following are in reduced row echelon form.

P =

1 0 0

0 1 0

0 0 1

 , Q =

1 0 0

0 1 4

0 0 0

 , R =

[
1 0 0 2

0 0 1 2

]
, S =

1 1 0

0 0 1

0 0 0


Theorem 3.6 (Uniqueness of the Reduced Echelon Form). Each matrix is row equivalent
to one and only one reduced echelon matrix.

Definition 3.19. A pivot position in a matrix A is a location in A that corresponds
to a leading 1 in the reduced row echelon form of A. A pivot column is a column
of A that contains a pivot position. A pivot element is a nonzero number in a pivot
position that is used as needed to create zeros via row operations.
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To write a matrix in reduced echelon form:

1. Begin with the leftmost nonzero column. This is a pivot column. The pivot
position is at the top.

2. Select a nonzero entry in the pivot column as a pivot. If necessary, interchange
rows to move this entry into the pivot position.

3. Use row replacement operations to create zeros in all positions below the pivot.

4. Cover (or ignore) the row containing the pivot position and cover all rows,
if any, above it. Apply steps 1-3 to the submatrix that remains. Repeat the
process until there are no more nonzero rows to modify.

5. Beginning with the rightmost pivot column and working upward and to the
left, create zeros above each pivot. If a pivot is not 1, make it 1 by a scaling
operation.

Example 3.24. Find the reduced row echelon form of the matrix A.

A =

0 0 2 3

0 2 0 1

0 1 1 5

 .
Solution:
Step 1: Here, the left most nonzero column is the second column.
Step 2: By row interchanging rule, we can obtain the pivot position as follows;0 0 2 3

0 2 0 1

0 1 1 5

 R1 ↔ R3

0 1 1 5

0 2 0 1

0 0 2 3


Step 3:
Now, the leading entry is 1, and to create zeros in all positions below the pivot, we use the
replacement rule:

R2 → R2 + (−2)R1

0 1 1 5

0 0 −2 −9
0 0 2 3


Step 4:
Now we proceed to the second row. Here, the leading entry is −2. Using a scaling rule we
obtain a leading 1:

R2 → (−1

2
)R2

0 1 1 5

0 0 1 9
2

0 0 2 3
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And applying row replacement rule:

R3 → R3 + (−2)R2

0 1 1 5

0 0 1 9
2

0 0 0 −6


And scaling R3,

R3 ↔ (−1

6
)R3

0 1 1 5

0 0 1 9
2

0 0 0 1


Step 5: Beginning with the rightmost pivot column, we create zeros above each pivot
element. That is, we start from the fourth column:

R1 → R1 + (−5)R3 , R2 → R2 + (−9

2
)R3

0 1 1 0

0 0 1 0

0 0 0 1


And using row replacement (to create zeros above the pivot element in the third column),

R1 → R1 + (−1)R2,

0 1 0 0

0 0 1 0

0 0 0 1

 .
Thus, the required matrix in reduced row echelon form is given by

Ã =

0 1 0 0

0 0 1 0

0 0 0 1

 .
Exercise 3.5.

1. Determine which matrices are in reduced row echelon form.

A =

[
1 2 0

0 1 7

]
, B =

1 0 0 0

0 0 1 2

0 0 0 0

 , C =

1 1 0 0 0 5

0 0 1 2 0 4

0 0 0 0 1 3


2. Give the row echelon form and also the reduced row echelon form of the following

matrices.

A =


1 2 3

2 1 −2
3 0 0

3 2 1

 , B =

 1 2 1 3

−3 2 1 0

3 2 1 1

 , C =

1 2 0 3

2 1 2 2

1 1 0 3
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3.6 Rank of matrix using elementary row operations

The ranks of matrices are useful in determining the number of solutions for linear systems.

Definition 3.20 (Rank of Matrix). Rank of anm×nmatrixA, denoted by rank(A),
is the number of nonzero rows of the reduced row echelon form of A.

Example 3.25. Determine the ranks of the following matrices which, are in reduced row
echelon form.

A =

1 0 0

0 1 0

0 0 1

 , B =

1 0 0

0 1 4

0 0 0

 , C =

[
1 0 0 2

0 0 1 2

]
, D =

1 1 0

0 0 0

0 0 0


Solution: Clearly, all the matrices are in reduced row echelon form. Hence, by Definition
3.20, we have rank(A) = 3 (since the number of nonzero rows in matrixA is 3). Similarly,
rank(B) = 2 (since the number of nonzero rows in matrixB is 2), rank(C) = 2 (since the
number of nonzero rows in matrix C is 2), and rank(D) = 1 (since the number of nonzero
rows in matrix D is 1).

Example 3.26. Find rank(A), where A =

1 1 2

2 2 5

3 3 2

.

Solution: After a sequence of elementary row operations, we obtain the reduced echelon
form of A, which is given by

Ã =

1 1 0

0 0 1

0 0 0

 .
Thus, rank(A) = 2.

Remark. The matrix A and its transpose At have the same rank. That is

rank(A) = rank(At).

Example 3.27. Verify that the given matrix A and its transpose At have the same rank.

A =

1 1 2

0 1 1

0 0 0−

 , and At =

1 0 0

1 1 0

2 1 0


Solution: Observe that the matrix A is in its row echelon form, and hence its rank is 2.
Now, we apply elementary row operations to reduce matrix At into its row echelon form,
and and we get that 1 1 0

0 1 0

0 0 0


Thus, rank(At) = 2 = rank(A).
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Exercise 3.6. Determine the rank of the following matrices.

A =

[
1 2 0

0 1 7

]
, B =

1 0 0 0

0 0 1 2

0 0 0 0

 , C =

1 1 0 0 0 5

0 0 1 2 0 4

0 0 0 0 1 3



P =


1 2 3

2 1 −2
3 0 0

3 2 1

 , Q =

 1 2 1 3

−3 2 1 0

3 2 1 1

 , R =

1 2 0 3

2 1 2 2

1 1 0 3



3.7 Determinant and its properties

The determinant is a function that takes a square matrix as an input and produces a scalar
as an output. It has many beneficial properties for studying, matrices and systems of equa-
tions.

Definition 3.21 (Determinant of 2× 2 matrix). The determinant of a 2× 2 matrix

A =

[
a c

d b

]
, denoted by det(A) (or |A|), is defined by the formula

det(A) =

∣∣∣∣a c

d b

∣∣∣∣ = ab− cd.

Example 3.28. Find the determinant of a matrix A =

[
5 2

3 4

]
.

Solution: Using Definition 3.21, the determinant of matrix A is given by

det(A) =

∣∣∣∣5 2

3 4

∣∣∣∣ = (5)(4)− (3)(2) = 14.

The determinant of a 3× 3 matrix can be defined using the determinants of 2× 2 matrices.

Definition 3.22 (Determinant of 3× 3 Matrix). Let

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


be a 3 × 3 matrix, and Aij (for i, j = 1, 2, 3) be the 2 × 2 submatrix of A obtained
by deleting the ith-raw and the jth-column of A. Then determinant of A is denoted
by det(A) (or |A|), and is defined as:

|A| = (−1)1+1a11|A11|+ (−1)1+2a12|A12|+ (−1)1+3a13|A13|

= a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12 ∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣ .
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Example 3.29. Compute the determinant of a matrix A =

∣∣∣∣∣∣
2 4 0

3 −1 2

2 1 1

∣∣∣∣∣∣.
Solution: Using Definition 3.22, the determinant is given by

det(A) =

∣∣∣∣∣∣
2 4 0

3 −1 2

2 1 1

∣∣∣∣∣∣ = 2

∣∣∣∣−1 2

1 1

∣∣∣∣− 4

∣∣∣∣3 2

2 1

∣∣∣∣+ 0

∣∣∣∣3 −12 1

∣∣∣∣
= 2(−1− 2)− 4(3− 4) + 0(3 + 2) = −6 + 4 + 0 = −2.

So far we discussed the determinants of 2 × 2 and 3 × 3 matrices. Next we define the
determinant of an n× n matrix for each positive integer n.

Definition 3.23 (Minors and Cofactors).
Let A = (aij)n×n, and Aij be the submatrix of A obtained by deleting the ith-raw
and jth-column of A for i, j = 1, 2, 3, ..., n. Then

(a) The minor for A at location (i, j), denoted by Mij(A), is the determinant of
the submatrix Aij . That is, Mij(A) = det(Aij).

(b) The cofactor, denoted by Cij(A), for A at location (i, j) is the sighed determi-
nant of the submatrix Aij . That is, Cij(A) = (−1)i+jdet(Aij).

Remark. In Definition 3.23, the cofactor Cij(A) at location (i, j) can be computed
using the following formula:

Cij(A) =

{
det(Aij), if i+ j is even
−det(Aij), if i+ j is odd.

Example 3.30. Compute the matrix of cofactors for the given matrix.

(a) A =

[
1 1

−1 2

]
(b) B =

1 0 2

1 1 3

2 0 1


Solution: (a) The minors of A are

M11(A) = 2, M21(A) = 1, M12(A) = −1, M22(A) = 1,

and the cofactors are

C11(A) = (−1)1+1M11(A) = (1)(2) = 2, C21(A) = (−1)2+1M21(A) = (−1)(1) = −1,

C12(A) = (−1)1+2M12(A) = (−1)(−1) = 1, C22(A) = (−1)2+2M12(A) = (1)(1) = 1.
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Thus, the matrix of cofactors for A is

[Cij(A)] =

[
2 1

−1 1

]
.

(b) The minors of B are

M11(B) =

∣∣∣∣1 3

0 1

∣∣∣∣ = 1, M21(B) =

∣∣∣∣0 2

0 1

∣∣∣∣ = 0, M31(B) =

∣∣∣∣0 2

1 3

∣∣∣∣ = −2,

M12(B) =

∣∣∣∣1 3

2 1

∣∣∣∣ = −5, M22(B) =

∣∣∣∣1 2

2 1

∣∣∣∣ = −3, M32(B) =

∣∣∣∣1 2

1 3

∣∣∣∣ = 1,

M13(B) =

∣∣∣∣1 1

2 0

∣∣∣∣ = −2, M23(B) =

∣∣∣∣1 0

2 0

∣∣∣∣ = 0 and M33(B) =

∣∣∣∣1 0

1 1

∣∣∣∣ = 1,

and the confactors are

C11(B) = (−1)1+1M11(B) = 1, C21(B) = (−1)2+1M21(B) = 0,

C31(B) = (−1)3+1M31(B) = −2, C12(B) = (−1)1+2M12(B) = 5,

C22(B) = (−1)2+2M22(B) = −3, C32(B) = (−1)3+2M32(B) = −1,

C13(B) = (−1)1+3M13(B) = −2, C23(B) = (−1)2+3M23(B) = 0,

and C33(B) = (−1)3+3M33(B) = 1.

Thus, the matrix of cofactors for B is

[Cij(B)] =

 1 5 −2
0 −3 0

−2 −1 1

 .
Definition 3.24 (Determinants of n × n Matrix). The determinant of a square
matrix A = [aij] of size n× n, denoted by det(A) (or |A|), is defined recursively as
follows: if n = 1 then det(A) = a11; otherwise, we suppose that determinants are
defined for all square matrices of size less than n and specify that

det(A) =
n∑
k=1

ak1Ck1(A) = a11C11(A) + a21C21(A) + ...+ an1Cn1(A), (3.1)

where Cij(A) is the (i, j)-th cofactor of A. The formula (3.1) is called a cofactor
expansion across the 1st column of A.

Example 3.31. Consider the matrices given in Example 3.30,

A =

[
1 1

−1 2

]
and B =

1 0 2

1 1 3

2 0 1

 .
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The cofactors of matrices A and B, respectively, are given by

[
2 1

−1 1

]
and

 1 5 −2
0 −3 0

−2 −1 1

 .
Now, using Definition 3.24, we have

det(A) = a11C11 + a21C21 = (1)(2) + (−1)(−1) = 3, and

det(B) = b11C11 + b21C21 + b31C31 = (1)(1) + (1)(0) + (2)(−2) = −3.

Example 3.32. Compute the determinant of matrix A:

A =

1 1 0

0 2 1

1 2 0


(a) by expanding the cofactrs across the 1st row

(b) by expanding the cofactrs across the 1st column

Solution: We have the matrix of cofactors Cij(A), given by

[Cij(A)] =

−2 1 −2
0 0 −1
1 −1 2

 .
(a) Now, expanding the cofactors across the 1st row, we have

det(A) = a11C11(A)+a12C12(A)+a13C13(A) = (1)(−2)+(1)(1)+(0)(−2) = −1.

(b) Similarly, expanding cofactors across the 1st column, we have

det(A) = a11C11(A) + a21C21(A) + a31C31(A) = (1)(−2)+ (0)(0) + (1)(1) = −1.

Observe that the determinant has the same value for expansions of cofactors across the 1st

row as well as the 1st column. This is true in general, i.e., the determinant value is the same
for the expansions of cofactors across any row or any column. This is briefly stated in the
following theorem.
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Theorem 3.7. The determinant of an n × n matrix A can be computed by cofactor
expansion across any row or any column. The expansion across ith row is

det(A) =
n∑
j=1

aijCij(A) = ai1Ci1(A) + ai2Ci2(A) + ...+ ainCin(A)

= (−1)i+1ai1|Ai1|+ (−1)i+2ai2|Ai2|+ ...+ (−1)i+nain|Ain|

and the expansion across jth column is

det(A) =
n∑
i=1

aijCij(A) = a1jC1j(A) + a2jC2j(A) + ...+ anjCnj(A)

= (−1)1+ja1j|A1j|+ (−1)2+ja2j|A2j|+ ...+ (−1)n+janj|Anj|

Remark. In Theorem 3.7, if the matrix A (for instance) is of size 3 × 3, then the
determinants can be easily computed as follows.

(i) The expansion across 2nd row is

|A| = −a21|A21|+ a22|A22|+ a23|A23|.

(ii) The expansion across 3rd column is

|A| = a13|A13| − a23|A23|+ a33|A33|.

(iii) The sign + or − can be determined using the pattern.+ − +

− + −
+ − +


(iv) The computation of determinants becomes easier by expanding the cofactors

across a row or column with the most zero entries.

Example 3.33. Compute the determinant of matrix A by expanding the cofactors across an
appropriate row or column.

A =

1 1 0

0 2 1

1 2 0


Solution: Here, we observe that the 3rd column has more number of zero entries than any
other columns and rows. Thus, the determinant of A (by expanding the cofactors across the
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3rd column) is given by

det(A) = a13|A13| − a23|A23|+ a33|A33| = 0− 1 + 0 = −1.

Properties of determinats: Let A be the square matrix of size n.

1. If an entire row (or an entire column) consists of zeros, then det(A) = 0.

2. If two rows (or columns) are equal, then det(A) = 0.

3. If one row (or column) is a scalar multiple of another row (or column), then
det(A) = 0.

4. If A,B and C, respectively, are the upper triangular, lower triangular, and
diagonal matrices, given by

A =

a11 a12 a13
0 a22 a23
0 0 a33

 , B =

b11 0 0

b21 b22 0

b31 b32 b33

 , D =

d11 0 0

0 d22 0

0 0 d33

 ,
then

det(A) = a11a22a33, det(B) = b11b22b33, and det(D) = d11d22d33.

That is, the determinants of the triangular and diagonal matrices are simply
the products of the entries in the main diagonal.

Example 3.34. Determine the determinants of the following matrices.

A =

1 2 3

0 0 0

1 2 0

 , B =

1 1 0

0 2 0

1 2 0

 , C =

 1 1 0

−2 2 1

1 1 0

 , D =

 1 1 3

−1 −1 −3
1 2 0


Solution: We have, det(A) = 0 (since the entire second row of matrixA consists of zeros),
det(B) = 0 (since the entire third column of matrixA consists of zeros), det(C) = 0 (since
the first and third rows of C are equal), and det(D) = 0 (since the second row of D is a
scalar multiple of the first row).

Example 3.35. Compute the determinants of the following matrices.

A =

4 3 −6
0 2 9

0 0 3

 , B =

3 0 0

3 4 0

2 1 5

 , D =

4 0 0

0 6 0

0 0 5


Solution: Using the properties of determinants, we have

det(A) =

∣∣∣∣∣∣
4 3 −6
0 2 9

0 0 3

∣∣∣∣∣∣ = (4)(2)(3) = 24, det(B) =

∣∣∣∣∣∣
3 0 0

3 4 0

2 1 5

∣∣∣∣∣∣ = (3)(4)(5) = 60, and
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det(D) =

∣∣∣∣∣∣
2 0 0

0 3 0

0 0 5

∣∣∣∣∣∣ = (2)(3)(5) = 30.

Theorem 3.8. For any square matrix A, det(A) = det(At) (Transposition doesn’t
alter determinants).

Example 3.36. For the given matrix A, verify that det(A) = det(At).

A =

1 0 2

2 −1 1

1 1 3


Solution: The transpose of matrix A is given by

At =

1 2 1

0 −1 1

2 1 3

 .
Now, we have the determinants of A and At are

det(A) = 2, and det(At) = 2.

Thus, det(A) = det(At).

Theorem 3.9 (Effects of elementary row operations).

I. If matrix B is obtained from a square matrix A by interchanging any two rows
(i.e., Ri ↔ Rj), then det(B) = −det(A). (Interchanging)

II. If matrix B is obtained from a square matrix A by multiplying the ith row by a
nonzero scalar α (i.e., Ri → αRi), then det(B) = αdet(A). (Scaling)

III If matrix B is obtained from a square matrix A by adding scalar multiple of
one row to the other (i.e., Ri → Ri + αRj), then det(B) = det(A). (Replace-
ment)

Example 3.37. Let A =

3 1 0

1 0 1

0 1 −1

 be the given matrix with det(A) = −2.

(a) If a matrix B is obtained from A by interchanging the first and second rows
(i.e., R1 ↔ R2), then we have

det(B) =

∣∣∣∣∣∣
1 0 1

3 1 0

0 1 −1

∣∣∣∣∣∣ = 2.
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Thus, det(B) = −det(A). Here, we observe that if the row interchanging has been
made two times, then det(B) = (−1)2det(A) = det(A). In general, if the row
interchanging has been made n times, then det(B) = (−1)ndet(A). Thus, det(B) =

det(A) if n is even, and det(B) = −det(A) if n is odd.

(b) If a matrix B is obtained from A by multiplying the second row by 4
(i.e., R2 → 4R2), then we have

B =

∣∣∣∣∣∣
3 1 0

4 0 4

0 1 −1

∣∣∣∣∣∣ = −8.
Thus, det(B) = 4det(A). If each row of matrix A is multiplied by 4, then we have

det(B) = 43det(A).

More generally, if A is an n × n matrix, and B is obtained by multiplying each row
of A by a nonzero scalar c, then we have det(B) = det(cA) = cndet(A).

(c) If a matrix B is obtained by replacing row 2 (i.e., R2 → R2 + 2R1), then

det(B) =

∣∣∣∣∣∣
3 1 0

7 2 1

0 1 −1

∣∣∣∣∣∣ = 2. Thus, det(B) = det(A).

Remark. Property (III) of determinants in Theorem 3.9 is particularly more inter-
esting, since it doesn’t change the determinant of the original matrix. This property
can be used to transform the given matrix into triangular matrix (upper or lower) for
which the computation of determinants is much easier than computing the determi-
nant of the original matrix directly, which is tedious and computationally inefficient.

Example 3.38. Compute the determinants of the matrices A and B using elementary row
operations.

A =

1 1 2

2 3 1

0 1 4

 , B =


1 1 2 2

2 3 5 6

1 3 5 3

1 1 3 6


Solution:

(a) Consider the given matrix A. Applying the row replacement; R2 → R2 − 2R1 and
then R3 → R3 −R2, we obtain the following upper triangular matrix.

Ã =

1 1 2

0 1 −3
0 0 7


Therefore, by Theorem 3.9 we have det(A) = det(Ã) = (1)(1)(7) = 7.
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(b) Similarly, by applying the row replacement

R2 → R2 − 2R1, R3 → R3 −R1, R4 → R4 −R1,

we obtain the following row equivalent matrix.

B̃ =


1 1 2 2

0 1 1 2

0 2 3 1

0 0 1 4


Now, the determinant of the matrix B̃ (by expanding the cofactors across the 1st

column and using the determinant of matrix A computed above) is given by

B̃ =

∣∣∣∣∣∣∣∣
1 1 2 2

0 1 1 2

0 2 3 1

0 0 1 4

∣∣∣∣∣∣∣∣ = 1

∣∣∣∣∣∣
1 1 2

2 3 1

0 1 4

∣∣∣∣∣∣ = (1)(7) = 7.

Therefore, by Theorem 3.9 we have det(B) = det(B̃) = 7.

Theorem 3.10 (Product Rule).
If A and B are two matrices for which the product AB is defined, then

det(AB) = det(A)det(B).

Example 3.39. Let A =

[
1 2

3 −1

]
and B =

[
2 0

1 4

]
be the given matrices. Then verify that

det(AB) = det(A)det(B).

Solution: Here, we have

AB =

[
4 8

5 −4

]
, det(AB) = −56, det(A) =

∣∣∣∣1 2

3 −1

∣∣∣∣ = −7, and det(B) =

∣∣∣∣2 0

1 4

∣∣∣∣ = 8.

Thus,
det(A)det(B) = (−7)(8) = −56 = det(AB).

Definition 3.25 (Definition of rank using Determinant). LetA be anm×nmatrix.
Then rank(A) = r, where r is the largest number such that some r× r submatrix of
A has a nonzero determinant.
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Example 3.40. Compute the the rank of matrix A =

[
1 0 2 −1
2 −3 2 0

]
using determinants.

Solution: Observe that, the largest possible size of any square submatrix of A is 2× 2. We

have (say) a submatrix
[
1 0

2 −3

]
(which is obtained by deleting the last two columns of A)

with
∣∣∣∣1 0

2 −3

∣∣∣∣ = −3 6= 0. Therefore, rank(A) = 2.

Exercise 3.7.

1. Compute the determinants of the following matrices using elementary row opera-
tions.

A =

[
1 2

3 4

]
, B =

 1 0 −2
5 −3 −1
−2 0 1


2. Compute the determinants of the following matrices by expanding cofactors across

any appropriate row or column.

A =

 1 3 0

−1 2 0

6 1 2

 , B =


1 3 0 1

−1 2 0 1

5 0 0 0

4 1 1 2

 , C =


0 3 1 0 2

0 2 1 0 2

5 1 −1 3 3

0 0 1 0 0

4 1 1 0 1


3. Compute the matrix of cofactors for the given matrices.

A =

[
1 −2
2 3

]
, B =

 1 0 −2
−1 1 4

2 0 3

 , C =


3 2 1 1

−1 0 2 0

4 1 −1 0

3 0 1 0


4. Determine the ranks of the following matrices using determinants.

A =

 1 2 3 0 1

2 1 3 2 4

−1 2 1 3 1

 , B =


1 2 0

3 2 1

2 1 0

0 2 1

 , C =


1 0 0

4 1 1

2 1 0

0 2 0


3.8 Adjoint and Inverse of a Matrix

The inverses of matrices are useful to solve linear systems. In this section, we define the
inverse of a matrix, we discuss different methods to compute an inverse, and the properties
of inverses.
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Definition 3.26 (Adjoint of a Matrix). LetA be an n×nmatrix. If [Cij(A)] denotes
the matrix of cofactors for A, then the adjugate (or adjoint) matrix of A, denoted by
Adj(A), is defined by the formula

Adj(A) = [Cij(A)]
t

That is, adjoint of matrix A is the transpose of the matrix of cofactors for A.

Example 3.41. Compute the adjoints of the given matrices.

A =

[
1 0

−1 2

]
, and B =

1 0 2

1 1 3

2 0 1


Solution: The matrix of cofactors for A is

[Cij(A)] =

[
2 1

0 1

]
.

Thus, the adjoint of matrix A is

Adj(A) = [Cij(A)]
t =

[
2 0

1 1

]
.

The matrix of cofactors for B is given by

[Cij(B)] =

 1 5 −2
0 −3 0

−2 −1 1

 .
Thus, the adjoint of matrix B is

Adj(B) = [Cij(B)]t =

 1 0 −2
5 −3 −1
−2 0 1

 .
Definition 3.27 (Inverse of a Matrix). LetA be an n×n square matrix. The inverse
of matrix A is an n× n matrix B such that

AB = In = BA,

where In is the n × n identity matrix. If such a Matrix B exists, then the matrix
A is said to be invertible (or nonsingular), and its inverse is denoted by A−1 (i.e.
B = A−1). A matrix that does not have an inverse is said to be noninvertible (or
singular).
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Example 3.42. Consider the following matrices:

A =

[
2 3

1 1

]
, B =

[
−1 3

1 −2

]
, C =

2 3 1

1 2 0

0 0 1

 , D =

 2 −3 −2
−1 2 1

0 0 1

 .
Then we have

AB =

[
2 3

1 1

] [
−1 3

1 −2

]
=

[
1 0

0 1

]
=

[
−1 3

1 −2

] [
2 3

1 1

]
= BA

That is, the products AB and BA give us the identity matrix I2. Therefore, matrix B is the
inverse of A i.e., A−1 = B.

Similarly, we have

CD =

1 0 0

0 1 0

0 0 1

 = DC.

Thus, the matrix D is the inverse of C i.e., C−1 = D.

Theorem 3.11. Let A be an n × n matrix. If A is invertible (non singular) then
det(A) 6= 0, and the inverse A−1 is given by the formula

A−1 =
1

det(A)
Adj(A).

Example 3.43. Compute the inverse of the given matrix A.

A =

1 0 0

0 2 0

0 0 3


Solution: We have, det(A) = 6,

[Cij(A)] =

6 0 0

0 3 0

0 0 2

 , and Adj(A) = [Cij(A)]
t =

6 0 0

0 3 0

0 0 2

 .
Therefore, by Theorem 3.11, we have

A−1 =
1

det(A)
Adj(A) =

1

6

6 0 0

0 3 0

0 0 2

 =

1 0 0

0 1
2

0

0 0 1
3

 .
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Theorem 3.12 (Laws of Inverse). Let A,B,C be matrices of appropriate sizes so
that the following multiplications make sense, I is a suitably sized identity matrix,
and α a nonzero scalar. Then

i. If the matrix A is invertible, then it has one and only one inverse, A−1.

ii. If A is invertible matrix of size n×n, then so is A−1 and hence, (A−1)−1 = A.

iii If any two of the three matrices A,B,AB are invertible, then so is the third,
and moreover, (AB)−1 = B−1A−1.

iv If the matrix A is invertible, then so is αA. Moreover, (αA)−1 = 1
α
A−1.

v If the matrix A is invertible, then so is At. Moreover (At)−1 = (A−1)t.

vi Suppose A is invertible. If AB = AC or BA = CA, then B = C.

Example 3.44. Let A =

[
1 −1
1 0

]
be the given matrix. Then we have

A−1 =

[
0 1

−1 1

]
, and (A−1)t =

[
0 −1
1 1

]
.

Now,

(a) 2A =

[
2 −2
2 0

]
and (2A)−1 =

[
1
2

1
2

−1
2

0

]
= 1

2
A−1. Thus, we have (2A)−1 = 1

2
A−1.

(b) At =
[
1 1

−1 0

]
and (At)−1 =

[
0 −1
1 1

]
. Thus, we have (At)−1 = (A−1)t.

Computation of Inverse Using Elementary Row Operations: Gauss-Jordan Elimina-
tion

Let A be an n× n invertible matrix and In be the identity matrix of size n× n.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . .

an1 an2 . . . ann

 , In =


1 0 . . . 0

0 1 . . . 0

. . . . . .

0 0 . . . 1


Then the inverse A−1 can be obtained using elementary row operations as follows.
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Finding the Inverse of a Matrix by Gauss-Jordan Elimination

1. Write the n × 2n matrix that consists of A on the left and the n × n identity
matrix In on the right to obtain [A|In]. This process is called adjoining matrix
In to matrix A.

2. If possible, row reduce A to In using elementary row operations on the entire
matrix [A|In]. The result will be the matrix [In|A−1]. If this is not possible,
then A is noninvertible (or singular).

3. Check your work by multiplying to see that AA−1 = In = A−1A.

Example 3.45. Compute the inverses of the given matrices using Gauss-Jordan Elimination.

A =

[
1 −1
3 2

]
, B =

1 0 0

0 2 0

0 0 3


Solution: Let A =

[
1 −1
3 2

]
. Then we have

[A|I2] =
[
1 −1
3 2

∣∣∣∣1 0

0 1

]
R2 → R2 + (−3)R1

[
1 −1
0 5

∣∣∣∣ 1 0

−3 1

]

R2 →
1

5
R2

[
1 −1
0 1

∣∣∣∣ 1 0

−3
5

1
5

]
R1 → R1 +R2

[
1 0

0 1

∣∣∣∣ 2
5

1
5

−3
5

1
5

]
.

Therefore, the transformed matrix is

[I2|A−1] =

[
1 0

0 1

∣∣∣∣ 2
5

1
5

−3
5

1
5

]

and hence, the inverse of matrix A is given by A−1 =

[
2
5

1
5

−3
5

1
5

]
.

Similarly, for B =

1 0 0

0 2 0

0 0 3

,

[A|I3] =

1 0 0

0 2 0

0 0 3

∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

R2 →
1

2
R2

1 0 0

0 1 0

0 0 3

∣∣∣∣∣∣
1 0 0

0 1
2

0

0 0 1



R3 →
1

3
R3

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣
1 0 0

0 1
2

0

0 0 1
3
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Therefore, the transformed matrix is

[I3|A−1] =

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣
1 0 0

0 1
2

0

0 0 1
3



Thus, A−1 =

1 0 0

0 1
2

0

0 0 1
3

.

Exercise 3.8.

1. For the given matrices A and B, compute the adjoint matrices.

A =

[
1 −2
2 3

]
, B =

 1 0 −2
−1 1 4

2 0 3


2. Compute the inverse of the given matrix (if it exists).

A =

[
1 2

4 −2

]
, B =

1 0 −2
0 1 2

0 1 3


3. Compute the inverse (if it exists) of the given matrix using elementary row opera-

tions.

A =

[
4 1

2 3

]
, B =

1 2 3

1 3 4

1 4 4

 , C =


1 1 2 1

0 2 0 0

0 2 1 −2
0 3 2 1


3.9 System of Linear Equations

Consider an oil refinery that produces gasoline, kerosene and jet fuel form light crude oil
and heavy crude oil. The refinery produces 0.3, 0.2 and 0.4 of gasoline, kerosene and jet
fuel, respectively, per barrel of light crude oil. And it produces 0.2, 0.4 and 0.3 of gasoline,
kerosene and jet fuel, respectively, per barrel of heavy crude oil. This is shown in Table 2.
Note that 10% of each of the crude oil is lost during the refining process.

Table 2

Gasoline Kerosene Jet fuel

Light crude oil 0.3 0.2 0.4

Heavy crude oil 0.2 0.4 0.3
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Suppose that the refinery has contracted to deliver 550 barrels of gasoline, 500 barrels of
kerosene, and 750 barrels of jet fuel. The problem is to find the number of barrels of each
crude oil that satisfies the demand.

If l and h represent the number of barrels of light and heavy crude oil, respectively, then
the given problem can be expressed as a system of linear equations

0.3l + 0.2h = 550

0.2l + 0.4h = 500

0.4l + 0.3h = 750

The given linear system has three equations and two unknowns. The matrix0.4 0.2

0.2 0.4

0.4 0.4


is known as the coefficient matrix of the system, and the right side of the system is a matrix550500

750

 .
With the column vector of unknowns

[
l

h

]
, the above information can be organized in

matrix form 0.3 0.2

0.2 0.4

0.4 0.3

[ l
h

]
=

550500

750

 .
Example 3.46. Consider the following system of two equations and two unknowns x, y

ax+ by = b1
cx+ dy = b2

.

If we interpret (x, y) as coordinates in the xy-plane, then each of the two equations repre-
sents a straight line, and (x∗, y∗) is a solution if and only if the point P with coordinates
x∗, y∗ lies on both lines. In this case, there are three possible cases: there exists only one
solution if the lines intersect (see Figure 1 a), there are infinitely many solutions if the lines
coincide (see Figure 1 b) and the system has no solution if the lines are parallel (see Figure
1 c).
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x+y=1
2x+2y=2

x+y=1
x+y=0

x+y=1
2x−y=0

(a) (c)(b)

Figure 1: In this figure: (a) represents the case where the lines intersect (b) represents the
case where the lines coincide (c) represents the case where the lines are parallel

Let us briefly discuss the three different cases: In part (a) the linear system is given by

x+ y = 1

2x− y = 0.

This system has only solution, namely (x, y)=(1
3
, 2
3
).

In part (b) the linear system is given by

x+ y = 1

2x+ 2y = 2.

This system has infinitely many solutions. In fact, the point (α, 1−α) is a solution for each
real number α.

And finally, in part (c) the linear system is given by

x+ y = 1

x+ y = 0,

which has no solutions, since the expressions in the left side of the two equations are the
same, but different values in the right side of the two equations.
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Definition 3.28. A linear system (or system of linear equations) of m-equations in
n-unknowns x1, x2, x3, ..., xn is a set of equations of the form

a11x1 + a12x2 + ...+ a1nxn = b1
a21x1 + a22x2 + ...+ a2nxn = b2
................................................

am1x1 + am2x2 + ...+ amnxn = bm,

(3.2)

where aij’s (for i = 1, 2, 3, ...,m and j = 1, 2, 3, ..., n), are given numbers, called
the coefficients of the system, and b1, b2, b3, ..., bm on the right side are also numbers.

A solution of (3.2) is a set of numbers x1, x2, x3, ..., xn that satisfies all the m-equations
simultaneously.

Matrix Form of a Linear System
From the definition of matrix multiplication, we see that the m-equations of (3.2) may be
written as a single vector equation

Ax = b, (3.3)

where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . .

...
am1 am2 . . . amn

 , x =


x1
x2
...
xn

 and b =


b1
b2
...
bm

 ,
are known as the coefficient matrix, the column vector of unknowns and the column vector
of numbers, respectively. We assume that the coefficients aij are not all zero, so that A is
not a zero matrix. Note that x has n components, whereas b has m components.

For the system of linear equations in (3.2), precisely one of the statements below is true:

1. It admits a unique Solution: There is one and only one vector x = (x1, x2, x3, ..., xn)

that satisfies all the m-equations simultaneously (the system is consistent).

2. It has infinitely Many Solutions: There are infinitely many different values of x
that satisfy all the m-equations simultaneously (the system is said to be consistent).

3. Has no Solution: There is no vector x that satisfies all equations simultaneously, or
the solution set is empty (the system is said to be inconsistent).

3.9.1 Gaussian Elimination

Gaussian elimination, also known as row reduction, is used for solving a system of linear
equations. It is usually understood as a sequence of elementary row operations performed
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on the corresponding matrix of coefficients.

Consider the linear system given in (3.2). The augmented matrix which represents the
system is given by

[A|b] =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . .

am1 am2 . . . amn

∣∣∣∣∣∣∣∣
b1
b2
.

bm

 .
Then, the idea here is, we solve the linear system whose augmented matrix is in row echelon
form, which is row equivalent to the original system. And, we have the following theorem
on the row equivalent linear systems.

Theorem 3.13. Row-equivalent linear systems have the same set of solutions.

Thus, if the augmented matrix is initially in row echelon form, then we simply solve it by
using back substitution. If it is not, then first rewrite it as a row equivalent system whose
augmented matrix is in its row echelon form, and then apply Theorem 3.13.

Example 3.47. Rewrite the following linear system as a row equivalent system, and then
solve it.

x1 − x2 = 1

x1 + 2x2 = 4.

Solution: Here, the augmented matrix of the given system is

[A|b] =
[
1 −1
1 2

∣∣∣∣14
]
,

which has row echelon form (after a sequence of elementary operations)

˜[A|b] = [1 −1
0 1

∣∣∣∣11
]
.

Thus, the row equivalent system is

x1 − x2 = 1

x2 = 1.

Clearly, solving the above linear system (whose augmented matrix is in row echelon form)
is much easier than solving the original system. The only solution of the linear system
(represented by an augmented matrix in row echelon form) is (x1, x2) = (2, 1). And, hence
by Theorem 3.13, a vector (x1, x2) = (2, 1) also solves the original linear system.
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Gaussian Elimination:

(a) Write the augmented matrix for the linear system.

(b) Use elementary row operations to rewrite the matrix in row echelon form.

(c) Write the system of linear equations corresponding to the matrix in row eche-
lon form, and use back-substitution to find the solution.

Example 3.48. Consider an oil refinery’s problem which is given as a system of linear
equations

0.3l + 0.2h = 550

0.2l + 0.4h = 500

0.4l + 0.3h = 750

where l and h represent the number of barrels of light and heavy crude oil, respectively.
The augmented matrix of the given linear system is

[A|b] =

0.3 0.2

0.2 0.4

0.4 0.3

∣∣∣∣∣∣
550

500

750

 ,
where

A =

0.3 0.2

0.2 0.4

0.4 0.3

 , and b =

550500

750

 .
And the matrix in row echelon form is given by

˜[A|b] =
0.1 0.2

0 0.1

0 0

∣∣∣∣∣∣
250

50

0

 .
Now, rewriting the given linear system as row equivalent system we have

0.1l + 0.2h = 250

0.1h = 50.

The only solution of the above system (in row echelon form) is (l, h) = (1500, 500), which
is also a solution for the original system. Thus, an oil refinery needs 1500 barrels of light
crude oil and 500 barrels of heavy crude oil in order to satisfy the demand.

Example 3.49. Solve the given linear system by using the method of Gaussian elimination.

x1 + 2x2 + x3 = 2

x1 − x2 − 2x3 = −1.
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Solution: The augmented matrix representing the given system is

[A|b] =
[
1 2 1

1 −1 −2

∣∣∣∣ 2−1
]
.

Now, by replacing R2 (i.e., R2 → R2 −R1), we obtain[
1 2 1

0 −3 −3

∣∣∣∣ 2−3
]

and by Scaling R2 (i.e., R2 → (−1
3
)R2), we have[

1 2 1

0 1 1

∣∣∣∣21
]
.

The last matrix is in its row echelon form, and hence the row equivalent system is

x1 + 2x2 + x3 = 2

x2 + x3 = 1.

In this case, the system has infinitely many solutions, and the set of solutions is be given by

{(1− α, α, 1− α) : α ∈ R}.

Example 3.50. Solve the following system of linear equations using the method of Gaussian
elimination.

4x2 + 3x3 = 8

2x1 − x3 = 2

3x1 + 2x2 = 5

Solution: The augmented matrix of the given system is

[A|b] =

0 4 3

2 0 −1
3 2 0

∣∣∣∣∣∣
8

2

5


Applying the following elementary row operations:
R1 ↔ R3 (Interchanging R1 and R3) 3 2 0

2 0 −1
0 4 3

∣∣∣∣∣∣
5

2

8


R2 ↔ R3 (Interchanging R2 and R3) 3 2 0

0 4 3

2 0 −1

∣∣∣∣∣∣
5

8

2
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R3 → R3 + (−2
3
)R1 (Replacing R3)3 2 0

0 4 3

0 −4
3
−1

∣∣∣∣∣∣
5

8

−4
3


R3 → R3 +

1
3
R2 (Replacing R3) 3 2 0

0 4 3

0 0 0

∣∣∣∣∣∣
5

8
4
3

 .
The last matrix is in row echelon form, and hence the row equivalent system is given by

3x1 + 2x2 = 5

4x2 + 3x3 = 8

0 = 4
3

We observe that the last equation in the linear system above is a contradiction to the fact
that 0 6= 4

3
. Consequently, the given linear system has no solution.

Theorem 3.14. Consider the system of linear equations in (3.2). If A and b are the
matrices of coefficients and the column vector of numbers, respectively. Then the
following statements are true.

(i) If rank(A) = rank([A|b]) = number of unknowns, then the linear system has
only one solution.

(ii) If rank(A) = rank([A|b]) < number of unknowns, then the linear system has
infinitely many solutions.

(iii) If rank(A) < rank([A|b]), then the linear system has no solution.

Remark.

(a) From Theorem 3.14, we observe that the linear system (3.2) has no solution if an
echelon form of the augmented matrix has a row of the form [0, 0, ..., 0 b] with b
nonzero.

(b) A linear system has unique solution when there are no free variable, and it has in-
finitely many solutions when there is at least one free variable.

Example 3.51. Use matrix rank to determine the number of solutions for the system.

(a)

x1 + x2 + x3 = 1

2x2 + 4x3 = 2

2x1 + 7x3 = 5

, (b)

x1 + x2 + 2x3 = 3

2x2 + 2x3 = 4

x2 + x3 = 2

(c)

x1 + 2x2 + 3x3 = 1

2x2 + 2x3 = −2
−2x2 − 2x3 = 3

Solution:
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(a) We have a linear system
x1 + x2 + x3 = 1

2x2 + 4x3 = 2

2x1 + 7x3 = 5

and the augmented matrix given by

[A|b] =

1 1 1

0 2 4

0 2 7

∣∣∣∣∣∣
1

2

5

 .
After a sequence of elementary row operations, we obtain its row echelon form

˜[A|b] =
1 1 1

0 1 2

0 0 1

∣∣∣∣∣∣
1

1

1

 .
From the transformed matrix, we can see that the matrix A in its row echelon form is

Ã =

1 1 1

0 1 2

0 0 1

 .
Thus, we have rank(A) = rank([A|b]) = number of unknowns. Hence, the given
linear system has only one solution.

(b) We have a linear system
x1 + x2 + 2x3 = 3

2x2 + 2x3 = 4

x2 + x3 = 2

In this case, the augmented matrix and its row echelon form, respectively, are given
by

[A|b] =

1 1 2

0 2 2

0 1 1

∣∣∣∣∣∣
3

4

2

 and ˜[A|b] =
1 1 2

0 1 1

0 0 0

∣∣∣∣∣∣
3

2

0


The matrix A in its row echelon form is

Ã =

1 1 2

0 1 1

0 0 0

 .
Here, the matrices Ã, and ˜[A|b] have only two nonzero rows. Thus,
rank(A) = rank([A|b]) < number of unknowns. Therefore, by Theorem 3.14, the
given system has infinitely many solutions.
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(c) Here, we have a linear system

x1 + 2x2 + 3x3 = 1

2x2 + 2x3 = −2
−2x2 − 2x3 = 3.

The augmented matrix [A|b] and its row echelon form ˜[A|b], respectively, are given
by

[A|b] =

1 2 3

0 2 2

0 −2 −2

∣∣∣∣∣∣
1

−2
3

 and ˜[A|b] =
1 2 3

0 1 1

0 0 0

∣∣∣∣∣∣
1

−1
1

 .
Here, the number of nonzero rows of the row echelon form of A and that of [A|b] are
2 and 3, respectively. Therefore, the given linear system has no solution.

Exercise 3.9. Solve the following linear systems using the method of Gaussian elimination.

(a)
−x1 + x2 = 4

−2x1 + x2 = 0

(b)

x1 + x2 = −1
x1 − x2 = 0

−2x1 + x2 = 3

(c)

x1 + 2x2 + x3 = 0

4x1 + 5x2 + 6x3 = 3

7x1 + 8x2 + 9x3 = 6.

(d)
x1 + 2x2 + x3 = 0

2x2 + 3x2 − 2x3 = 0

3.9.2 Cramer’s rule

Cramer’s Rule is a method for solving linear systems where the number of equations and
the number of unknowns are equal. Cramer’s rule relies on determinants. Consider the
following linear system of n-equations in n-unknowns x1, x2, x3, ..., xn

a11x1 + a12x2 + ...+ a1nxn = b1
a21x1 + a22x2 + ...+ a2nxn = b2
................................................

an1x1 + an2x2 + ...+ annxn = bn

(3.4)

which has a matrix notation
Ax = b.
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Let us define the determinants

D =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . .

...
am1 am2 . . . amn

∣∣∣∣∣∣∣∣∣ , Dj =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1(j−1) b1 a1(j+1) . . . a1n
a21 a22 . . . a2(j−1) b2 a2(j+1) . . . a1n

...
... . . .

...
...

... . . .
...

an1 an2 . . . an(j−1) bn an(j+1) . . . ann

∣∣∣∣∣∣∣∣∣
(3.5)

for j = 1, 2, 3, ..., n. Here, D is the determinant of the coefficient matrix A, and for each j
Dj represents the determinant of a matrix which is obtained from A after replacing the j-th
column by the column vector b.

Theorem 3.15 (Cramer’s rule).

(a) If a linear system (3.4) of n-equations in the same number of unknowns
x1, x2, x3, ..., xn, has a nonzero coefficient determinant D = |A|, then the
system has precisely one solution. This solution is given by

x1 =
D1

D
, x2 =

D2

D
, ..., xn =

Dn

D

where D and Dj for j = 1, 2, 3, ..., n are defined in (3.5).

(b) If the system (3.4) is homogeneous and D 6= 0, then it has only the trivial
solution x1 = 0, x2 = 0, x3 = 0, ..., xn = 0. If D = 0 the homogeneous
system also has nontrivial solutions.

Example 3.52. Use Cramer’s rule to solve the system of linear equations.

4x1 − 2x2 = 10

3x1 − 5x2 = 11

Solution: Here, the coefficient matrix A and the column vector b, respectively, are[
4 −2
3 −5

]
, and

[
10

11

]
.

And the determinants D,D1, D2 are

D =

∣∣∣∣4 −23 −5

∣∣∣∣ = (−20)− (−6) = −14, D1 =

∣∣∣∣10 −211 −5

∣∣∣∣ = (−50)− (−22) = −28,

D2 =

∣∣∣∣4 10

3 11

∣∣∣∣ = (44)− (30) = 14.

Therefore, by Theorem 3.15, the unique solution of the given linear system is

(x1, x2) =

(
D1

D
,
D2

D

)
= (2,−1).
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Example 3.53. Solve the following system of linear equations using Cramer’s rule

2x1 − x2 = 0

−x1 + 2x2 − x3 = 0

−x2 + x3 = 1

Solution: With the coefficient matrix

A =

 2 −1 0

−1 2 −1
0 −1 1

 , and column vector b =

00
1

 ,
the determinants D,D1, D2 and D3 are computed as follows;

D =

∣∣∣∣∣∣
2 −1 0

−1 2 −1
0 −1 1

∣∣∣∣∣∣ = 1, D1 =

∣∣∣∣∣∣
0 −1 0

0 2 −1
1 −1 1

∣∣∣∣∣∣ = 1, D2 =

∣∣∣∣∣∣
2 0 0

−1 0 −1
0 1 1

∣∣∣∣∣∣ = 2

and

D3 =

∣∣∣∣∣∣
2 −1 0

−1 2 0

0 −1 1

∣∣∣∣∣∣ = 3.

Thus, by Theorem 3.15, the only solution of the given linear system is

(x1, x2, x2) =

(
D1

D
,
D2

D
,
D3

D

)
= (1, 2, 3).

Remark. Cramer’s rule doesn’t work if the determinant of the coefficient matrix is zero or
the coefficient matrix is not square.

Exercise 3.10. Solve the following linear systems using Cramer’s rule (if possible).

(a)
4x1 − 2x2 = 10

3x1 − 5x2 = 11

(b)

−x1 + 2x2 − 3x3 = 1

2x1 + x3 = 0

3x1 − 4x2 + 4x3 = 2.

(c)

x1 = 7

2x2 = 8

3x3 = 24.
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3.9.3 Inverse method

The Inverse method is one of the important methods to solve a linear system with n equa-
tions in n unknowns.

Example 3.54. Consider a linear system

x− y = 1

x+ y = 3.

Using matrix notation, it can be rewritten as[
1 −1
1 1

] [
x

y

]
=

[
1

3

]
. (3.6)

And if we denote the coefficient matrix by A, then we have

A =

[
1 −1
1 1

]
, and A−1 =

[
1
2

1
2

−1
2

1
2

]
.

Now, multiplying (from the left) both sides of equation (3.6) by A−1, we have[
1
2

1
2

−1
2

1
2

] [
1 −1
1 1

] [
x

y

]
=

[
1
2

1
2

−1
2

1
2

] [
1

3

]
.

And using the fact A−1A = I2, we have[
1 0

0 1

] [
x

y

]
=

[
2

1

]
. This implies

[
x

y

]
=

[
2

1

]
Thus, (x, y) = (2, 1) is the only solution of the given system of linear equations. This
shows the usefulness of the matrix inverse to solve linear systems.

Consider the following linear system with n-equations in n-unknowns x1, x2, x3, ..., xn;

a11x1 + a12x2 + ...+ a1nxn = b1
a21x1 + a22x2 + ...+ a2nxn = b2
................................................

an1x1 + an2x2 + ...+ annxn = bn.

(3.7)

The matrix notation of the linear system (3.7) is

Ax = b,

where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . .

...
an1 an2 . . . ann

 , x =


x1
x2
...
xn

 and b =


b1
b2
...
bn

 .
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Theorem 3.16 (Inverse Method). IfA is an invertible matrix, then for each b ∈ Rn,
the linear system Ax = b has a unique solution, which is given by

x = A−1b.

Example 3.55. Solve the following system of linear equations using matrix inverse method.

2x1 − x2 = 1

3x1 + 2x2 = 12

Solution: The matrix of coefficients A, the inverse A−1, and the column vector b, respec-
tively, are given by

A =

[
2 −1
3 2

]
, A−1 =

[
2
7

1
7

−3
7

2
7

]
, and b =

[
1

12

]
.

Thus, by Theorem 3.16, the only solution of the given linear system is[
x1
x2

]
= A−1b =

[
2
7

1
7

−3
7

2
7

] [
1

12

]
=

[
2

3

]
.

Example 3.56. Use matrix inversion to solve the following linear system.

2x1 + 3x2 + x3 = 1

x1 + 2x2 = −2
x3 = 3

Solution: The coefficient matrix A, the column vector b and the inverse A−1, respectively,
are given by

A =

2 3 1

1 2 0

0 0 1

 , b =

 1

−2
3

 , A−1 =

 2 −3 −2
−1 2 1

0 0 1

 .
Thus, by Theorem 3.16, the unique solution of the given linear system isx1x2

x3

 = A−1b =

 2 −3 −2
−1 2 1

0 0 1

 1

−2
3

 =

20
3

 .
Exercise 3.11. Solve the following linear systems using the method of matrix inversion (if
possible).

(a)
3x1 + 4x2 = −4
5x1 + 3x2 = 4
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(b)

4x1 − x2 − x3 = 1

2x1 + 2x2 + 3x3 = 10

5x1 − 2x2 − 2x3 = −1.

(c)

3x1 = 12

4x2 = 16

5x3 = 20.

Review exercises
1. For every square matrix A, show that A+ At is symmetric.

2. Given matrices

A =

 3 0

−1 2

1 1

 , B =

[
4 −1
0 2

]
, C =

[
1 4 2

3 1 5

]

(i) Compute the products A(BC), (AB)C, and verify that A(BC) = (AB)C.

(ii) Compute the products α(AB), (αA)B, A(αB), and verify that

α(AB) = (αA)B = A(αB).

3. A fruit grower raises two crops, apples and peaches. The grower ships each of these
crops to three different outlets. In the matrix

A =

[
125 100 75

100 175 125

]
aij represents the number of units of crop i that the grower ships to outlet j. The
matrix B =

[
$3.5 $6.00

]
represents the profit per unit. Find the product BA and

state what each entry of the matrix represents.

4. A corporation has three factories, each of which manufactures acoustic guitars and
electric guitars. In the matrix

A =

[
70 50 25

35 100 70

]
aij represents the number of guitars of type i produced at factory j in one day. Find
the production levels when production increases by 20%.

5. Find the value of x for which the matrix is equal to its own inverse

(a)

[
3 x

−2 −3

]
(b)

[
2 x

−1 −2

]
(c)

[
x 2

−3 4

]
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6. If A =

[
cos(θ) sin(θ)

−sin(θ) cos(θ)

]
, then

i. show that A = A−1

ii. show that An =

[
cos(nθ) sin(nθ)

−sin(nθ) cos(nθ)

]
.

7. If A =

[
cos(θ) sin(θ)

−sin(θ) cos(θ)

]
, and B =

[
cos(φ) sin(φ)

−sin(φ) cos(φ)

]
, then show that

AB =

[
cos(θ + φ) sin(θ + φ)

−sin(θ + φ) cos(θ + φ)

]
.

8. Determine the values of α for which the matrix A =

1 1 0

1 0 0

1 2 α

 is invertible and

find A−1.

9. Show that if A is invertible, then so is Am for every positive integer m; moreover,
(Am)−1 = (A−1)m.

10. If A and B are n× n matrices with A is invertible, then show that

(A+B)A−1(A−B) = (A−B)A−1(A+B).

11. Solve the following systems of linear equations using Gaussian elimination

(a)

x1 − x2 + 2x3 = 4

x1 + x3 = 6

2x1 − 3x2 + 5x3 = 4

3x1 + 2x2 − x3 = 1

(b)

x1 − 2x2 + 3x3 = 9

−x1 + 3x2 = −4
2x1 − 5x2 + 5x3 = 17

(c)

2x1 + x2 − x3 + 2x4 = −6
3x1 + 4x2 + x4 = 1 = 2

x1 + 5x2 + 2x3 + 6x4 = −3
5x1 + 2x2 − x3 − x4 = 1

12. Use Cramer’s rule (if possible) to solve the following linear systems.

(a)
x1 + 2x2 = 5

−x1 + x2 = 1
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(b)

4x1 − x2 − x3 = 1

2x1 + 2x2 + 3x3 = 10

5x1 − 2x2 − 2x3 = −1

(c)

4x1 − 2x2 + 3x3 = −2
2x1 + 2x2 + 5x3 = 16

8x1 − 5x2 − 2x3 = 4

13. Use matrix inversion method (if possible) to solve the following linear systems.

(a)

2x1 + 3x2 + x3 = −1
3x1 + 3x2 + x3 = 1

2x1 + 4x2 + x3 = −2

(b)

2x1 + 3x2 + x3 = 4

3x1 + 3x2 + x3 = 8

2x1 + 4x2 + x3 = 5

(c)

4x1 − 2x2 + 3x3 = 0

2x1 + 2x2 + 5x3 = 0

8x1 − 5x2 − 2x3 = 0
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Chapter Four 

Introduction to calculus 

Chapter Objectives  
At the end of this chapter you should be able to: 

 become familiar with the concept of limits. 

 explain the intuitive meaning of limit of a function. 

 evaluate limits of a function at given points. 

 identify and evaluate one-sided limits. 

 have an understanding of the basic limit theorems. 

 acquire basic knowledge on infinite limits and limits at infinity to find asymptotes. 

 get acquainted with the concept of continuity of a function. 

 apply  the intermediate value theorem to locate roots of equations. 

 become familiar with the derivative of a function. 

 find the slope and equation of a tangent line to a curve. 

 get basic knowledge on the techniques of differentiation. 

 evaluate the derivative of polynomial, rational and composite functions. 

 find the derivatives of the exponential and logarithmic functions. 

 develop an appreciation of higher derivatives of functions.    

 apply the concepts of the derivative to find rates of change of variable quantities. 

 evaluate maximum and minimum values of functions. 

 use the concepts of the derivative to sketch the graph of a function. 

 get acquainted with related rate problems. 

 define an anti-derivative of a continuous function. 

 find indefinite integrals of some elementary functions. 

 evaluate the integrals of functions using the techniques of substitution, integration by parts 
and integration by partial fractions. 

 solve integrals involving trigonometric functions. 

 find the definite integral of continuous functions. 

 apply the concepts of definite integrals to find areas of regions bounded by continuous 
functions. 
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4.1. Limits and continuity  

At the end of this section you should be able to  

 become familiar with the concept of limits. 

 explain the intuitive meaning of limit of a function. 

 evaluate limits of elementary functions at given points. 

 identify right-hand limit from left-hand limit. 

 evaluate one-sided limits.  

 become aware of the relationship between one-sided limits and the existence of limit of a 
function. 

 find limit of a function in terms of its one-sided limits.   

 describe the basic limit theorems. 

 find limits of functions given in terms of combinations of function. 

 evaluate limit of powers of functions. 

 evaluate the limit of composite functions. 

 apply the squeeze theorem to evaluate limits.  

 gain an understanding of the relationship between infinite limits and vertical asymptotes. 

 describe horizontal asymptotes in terms of limits at infinity. 

 see the relationship between infinite limits at infinity and oblique asymptotes. 

 give the definition of continuous  function. 

 identify the difference between continuous and discontinuous functions. 

 state the theorems on continuity. 
 
In this section we study the concepts of limits and continuity of functions.  The concept of limit is 
fundamental to our main subjects of the branch of mathematics called differential and integral 
calculus. When we ask about the limit of a function at a point c, we are to ask about tendencies of 
the values of f(x) as x gets arbitrarily closer and closer to c. 

Consider the function f(x) = 2x and find values of f for values of x close to 3 (but not necessarily 
equal to 3). 

 values of x to the left of 3 

  
 
 
 

 values of x to the right of 3 

 

 

x 2 2.5 2.9 2.99 2.999 … 

f(x) 4 5 5.8 5.98 5.998 ..   … 

x 4 3.5 3.1 3.01 3.001 … 

f(x) 8 7 6.2 6.02 6.002 ..   … 
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As you can see from the above two tables, the values of f(x) = 2x tend to approach to 6 as x gets 
closer and closer to 3 from both sides of 3. 
Intuitively, we say “6 is the limit of f(x) = 2x as x approaches 3” and we write  

  )2(lim
3

x
x

 = 6. 

In general, if for a given real number c, the values of  a function f(x) approaches a number L as x 
gets close to c, we write                  

  )(lim xf
cx

 = L 

We may sometimes write this as f(x)  L as x  c.   
 
Suppose f is a function and c is a fixed real number. When one ask for the behavior (approximate 
value) of f(x) for x near c, normally one is not interested about the value f(c). Instead, one is 

asking about values of f at x (c -  , c +  ) for x ≠ c, with   > 0 ( - delta).   We call the 
interval (c -  , c +  ) a neighborhood of c. When we exclude c from the neighborhood, we 
obtain a union of two disjoint intervals. 

i.e.,      (c -  , c)   (c, c +  ). 
Such a set is called a deleted neighborhood of c. For   > 0, the interval (c -  , c) may be called 
a left neighborhood of c while (c, c +  ) a right neighborhood of c. Thus when we talk of f near 
c, we are interested in the function values only in a deleted neighborhood of c.  

Therefore, when our interest is to know limit of f at c, we are mainly curious to know about the 
tendencies of f(x) for x in a deleted neighborhood of c.   

 

 

 

Figure 4.1: Deleted neighborhood of c 

Similarly, if x gets close to 2, the function f(x) = x + 3 gets close to 5, so that  5)3(lim
2




x
x

 

and if x gets close to 1, f(x) = x2 – 3 approaches –2, so that 2)3(lim 2

1



x

x
. 

You can also see that  

      9)1(lim 3

2



x

x
,            1lim

8



x

x
 = 3,      and        

4

1

5

1
lim

1


 xx
 

 
In the above examples we were able to find the limits without much difficulty.  However, finding 
certain limits are not so immediate.  For example consider  

  
2

4
lim

2

2 


 x

x
x
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Here both x2 – 4 and x – 2 approach to 0 as x approaches to 2, and 00 is not determined.  But note 

that  

  
2

42




x

x
 = 

2

)2)(2(




x

xx
 = x + 2,     for x  2. 

Thus, for x close to 2 (but not necessarily equal to 2), the behavior of 
2

42




x

x
 is similar to that of x 

+ 2 and it seems reasonable to conclude that  

  
2

4
lim

2

2 


 x

x
x

 = )2(lim
2




x
x

 = 4. 

 
In the same manner, we have  

x

x
x

4)2(
lim

2

0




 = 
x

xx
x

444
lim

2

0




 = 
x

xx
x

)4(
lim

0




 = 4)4(lim
0




x
x

, (for x  0) 

1

1
lim

1 


 x

x
x

 = 
1

1
lim

1 


 x

x
x

, 
1

1




x

x
 =  1)1(

1
lim

1 


 xx

x
x

= 
1

1
lim

1  xx
 = 

1

1

x
 =

2

1
,   (for x  1)  

Even though standard textbooks of calculus give the formal (analytic) definition of limit of a 
function using the notion of neighborhoods, we shall give here a working definition in terms of 
what we call one-sided limits.  

Definition 4.1: 
Suppose f is a function and c is a fixed real number. 

1.   A real number L is called the left-hand limit of f at c, written as    )(lim xf
cx 

 = L  

 if and only if for all values of x sufficiently close to c from the left side of c, the 
corresponding values of  f approach to L. 

2.   A real number R is called the right-hand limit of f at c, written as   )(lim xf
cx 

 = R 

       if and only if for all values of x sufficiently close to c from the right side of c, the 
corresponding values of f approach to R. 

 
Note that, if the set (c -  , c)   (c, c +  ) is a deleted neighborhood of c, then for left-hand limit 

we take x(c – , c), i.e. x < c, and for right-hand limit we take x(c, c + ), i.e. x > c   (but not 
necessarily x = c). 

Example 4.1: Let  f(x) = 






1,2

1,2

xforx

xforx
 Then )(lim

1
xf

x 
 = 2

1
lim x
x 

 = 1, while )(lim
1

xf
x 

 = x
x

2lim
1

= 2                                                                             
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Example 4.2:   Let f(x) = 
x

x
 = 







0,1

0,1

xfor

xfor
                               y                                                                             

)(lim
0

xf
x 

 = )1(lim
1


x
= –1                                                x 

and   )(lim
0

xf
x 

 =  1                                                         –1        Figure 4.1                             

                                             y                                                                                                

Example 4.3 :    Let f(x) = 








0.1

0,12
2 xforx

xforx
                                           y = x2+1 

The )(lim
0

xf
x


 = 

0
lim
x

(2x + 1) = 1                                                                          x 

and 
0

lim
x

f(x) = 
0

lim
x

(x2 + 1)   = 1                              y = 2x + 1             Figure 4.2 

  Note that in this example )(lim
0

xf
x 

 = 
0

lim
x

f(x) 

Definition 4.2: 
Suppose   is function and c is a fixed real number.  A real number L is called the limit of f at c if 
and only if the left-and right-hand limits exist and are both equal to L; 

i.e. )(lim xf
cx

  = L if and only if  )(lim xf
cx 

 = L = )(lim xf
cx 

 

  

Thus for )(lim xf
cx

 to exist, the following conditions must be satisfied: 

       i) )(lim xf
cx 

 must exist 

      ii) )(lim xf
cx 

 must exist   

     iii)  )(lim xf
cx 

 = )(lim xf
cx 

   

Otherwise, we say )(lim xf
cx

 does not exist. 

Thus in Example 4.3, where  f(x) = 








0,1

0,12
2 xforx

xforx
 

we have seen above that )(lim
0

xf
x 

 = 1 = )(lim
0

xf
x    

Thus, )(lim
0

xf
x

 = 1. 

Example 4.4:    Let f(x) = 2x   for x  .  Then  

)(lim
1

xf
x 

 = x

x
2lim

1
 = 21 = 2      and      )(lim

1
xf

x 
 = x

x
2lim

1
 = 21 = 2 

Since x

x
2lim

0
 = x

x
2lim

1
= 2, we have x

x
2lim

1
 = 2 
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In fact, if a > 0, a  1, then x

cx
a


lim  = ac, for any cR 

Similarly, you can show that x
a

cx
loglim


 = x

alog  = c
alog ,  for c > 0 and x

cx
sinlim


 = sin c, c. 

Example 4.5:   Let f(x) = 






1,3

1,2

xfor

xforx
 

Then )(lim
1

xf
x 

 = 2

1
lim x
x 

 = 1 while )(lim
1

xf
x 

 = 3lim
1x

 = 3. Since 1  3, )(lim
1

xf
x

 does not exist. 

Example 4.6:    Let f(x) = x , for x  0.  Then )(lim
0

xf
x 

 = 0.  But since f(x) = x is not defined 

to the left of 0,  x
x 0
lim  does not exist. Hence x

x 0
lim


 does not exist. 

Remark: If a function f has a limit as x approaches a number c, then the limit is unique; i.e. 

       if )(lim xf
cx

 = L1 and )(lim xf
cx

= L2, then L1 = L2. 

 

 Basic Limit Theorems 

 
Theorem 4.1:   Suppose 

cx
lim f(x) = L, 

cx
lim g(x) = M and k is a constant. 

Then   i) 
cx

lim kf(x) = k
cx

lim f(x) = KL …            Constant Rule  

 ii) 
cx

lim (f + g)(x) = 
cx

lim f(x) + 
cx

lim g(x) = L + M …  Addition Rule  

 iii) 
cx

lim (f – g)(x) = 
cx

lim f(x) - 
cx

lim g(x) = L – M …  Difference Rule  

 

Example 4.7:   
2

lim
x

5sin x = 5
2

lim
x

sin x  = 5(1) = 5   

Example 4.8:   Let  f(x) = 2x and  g(x) = 5x – 1.  Then 

1
lim
x

(f + g)(x) = 
1

lim
x

f(x) + 
1

lim
x

g(x) = 
1

lim
x

(2x) + 
1

lim
x

(5x – 1) = 2(1) + 5(1) – 1   =  2 + 5 – 1 = 6 

 
3

lim
x

(f – g)(x) = 
3

lim
x

f(x) – 
3

lim
x

g(x) = 
3

lim
x

(2x) – 
3

lim
x

(5x – 1) = 2(3) – [5(3) – 1] = 6 –14 = –8 

Theorem 4.2:    Assume that 
cx

lim f(x) = L and 
cx

lim g(x) = M.   

 Then 
cx

lim (fg)(x) =  )(lim xf
cx

  )(lim xg
cx

 = L.M  …   Product Rule 

 

Example 4.9:  
x

lim x cos x = 
x

lim x.
x

lim cos x = . cos  = (-1) = -.   

It follows from Theorem 4.2 that 
cx

lim x2 =
cx

lim x.x= 
cx

lim x. 
cx

lim x  = c.c  = c2 
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In general, if n is a positive integer,  n

cx

n cx 


lim . 

Thus, if P(x) = anx
n + an-1x

n-1 + … + a2x
2 + a1x + a0 is any polynomial function of degree n and c 

is any real number, then from Theorems 4.1 and 4.2, we get 

 
cx

lim P(x) = 
cx

lim ( anx
n + an-1 x

n-1 + … + a2x
2 + a1x + a0)  

   = 
cx

lim anx
n + 

cx
lim an-1x

n-1 +…+
cx

lim a2x
2 + 

cx
lim a1x +

cx
lim a0 

   = an
cx

lim xn + an-1
cx

lim xn-1+ …+ a2
cx

lim x2 + a1
cx

lim x + a0  

   = anc
n + an-1c

n-1 + …+ a2c
2 + a1c + a0  = P(c) 

Example 4.10: Let P(x) = 2x3 + 4x2 – 3x + 1.  Then 

  
1

lim
x

P(x) = 
1

lim
x

(2x3 + 4x2 – 3x + 1)  = 2(–1)3 + 4(–1)2 – 3(–1) + 1 =  –2 + 4 + 3 + 1 = 6 

 

   Theorem 4.3:  Assume that 
cx

lim f(x) = L, 
cx

lim g(x) = M and suppose M  0 

Then 
cx

lim 







g

f
(x) = 

)(lim

)(lim

xg

xf

cx

cx



  = 
M

L
 …     Quotient Rule  

 

Example 4.11:   
10

lim
x x

xlog
 = 

x

x

x

x

10

10

lim

loglim



  = 
10

1
. 

   If f(x) = 
)(

)(

xq

xp
 is a rational function, then 

cx
lim f(x) = 

cx
lim

)(

)(

xq

xp
 = 

)(lim

)(lim

xq

xp

cx

cx



  = 
)(

)(

cq

cp
= f(c) if 

0)( cf . 

Example 4.12:   
2

lim
x 64

14
2

3




xx

xx
 = 

)64(lim

)14(lim
2

2

3

2









xx

xx

x

x = 
6)2()2(4

1)2(4)2(
2

3




 = 
6216

188




 = 
8

1
.                                          

      

Theorem 4.4:   Suppose 
cx

lim f(x) = L, L  0 and aR such that LaR  

Then, 
cx

lim (f(x))a = La   …………...   Power Rule  

 

Example 4.13: x
x

sinlim
2




 =   2
1

2

sinlim x
x




   =  
2

1

2

sinlim













x

x


 = 2

1

1  = 1  = 1. 

Example 4.14:  3 22

4
)32(lim 


xx

x
 =   3

2
2

4
32lim 


xx

x
=   3

2
3416   =   3

2
27  = 32 = 9 
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Theorem 4.5 (The Squeezing Theorem).   Suppose f, g and h are functions such that f(x)  h(x) 

 g(x) for all x in some deleted neighborhood of c. If 
cx

lim f(x) = L = 
cx

lim g(x), then 
cx

lim h(x) = L. 

Example 4.14:    Evaluate 
0

lim
x

x2sin
x

1
 

Solution:   It may be tempting to consider x2 sin
x

1
 as the product of x2 and sin

x

1
 and then use the 

Product Rule.  Unfortunately it can be shown that 
0

lim
x

sin
x

1
 does not exist.  Thus we cannot use 

the Product Rule to evaluate the given limit.  However since the sine function has range [–1, 1], it 

follows that –1  sin
x

1
  1,    for x  0. Multiplying both sides by x2, we get   

   –x2  x2sin
x

1
  x2  with 

0
lim
x

(–x2) = 0 = 
0

lim
x

x2 

Thus, by the Squeeze Theorem, we get   
0

lim
x

x2 sin
x

1
 = 0. 

     Remark: One of the most important applications of the Squeezing Theorem is evaluating 

x

x
x

sin
lim

0
.  We cannot apply the Quotient Rule to evaluate this limit since the limit of the 

denominator is 0. But using some geometric constructions and the Squeeze Theorem it can be 
shown that  
   
 

                                                     

Remark: The above result has important consequences especially in the evaluation of some     

limits involving trigonometric functions. 

Example 4.15:   Find 
0

lim
x x

x5sin
 

Solution:   
0

lim
x x

x5sin
 = 

0
lim
x x

x

5

5sin5
 = 5

0
lim
x x

x

5

5sin
 

If we put y = 5x, we have as x  0, 5x  0 so that y  0. Thus 
0

lim
x x

x5sin
 = 5

0
lim
y y

ysin
 = 5. 

In general, for any a , 
0

lim
x x

axsin
 = a.  

Example 4.16:  Find  
0

lim
x x

xtan
 

x

x
x

sin
lim

0
 = 1 
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Solution:  
0

lim
x x

xtan
 = 

0
lim
x









xx

x 1
.

cos

sin
  = 

0
lim
x
















 xx

x
x cos

1
lim

sin
0

  = 1.
1

1
 = 1. 

Example 4.17:  Evaluate 
0

lim
x x

x 1cos 
 

Solution:   By multiplying both numerator and denominator by cos x + 1 we get  

0
lim
x x

x 1cos 
 = 

0
lim
x


















 

1cos

1cos1cos

x

x

x

x
  = 

0
lim
x )1(cos

1cos2




xx

x
 

   = 
0

lim
x )1(cos

sin 2




xx

x
  (since sin2x + cos2x = 1) 

                        = 
0

lim
x




















1cos

sinsin

x

x

x

x
  = 

0
lim
x x

xsin
.

0
lim
x 1cos

sin




x

x
 = 1.

1

0
 = 1.0 = 0. 

 

 Infinite Limits, Limits at Infinity and Asymptotes 

When 
cx

lim f(x) does not exist, it may happen that as x approaches c from right, the value of f(x) 

becomes indefinitely large or becomes negative and indefinitely large in absolute value.  The 
value of f(x) may behave similarly when the left-hand limit at c does not exist.  We shall use the 

symbols  (infinity) and -   to express these cases, respectively.  

To explain these concepts consider the function f(x) = 
x

1
, for x  0 

As x gets close to 0 from right, the values of 

f(x) = 
x

1
 become arbitrarily large positive.                     

In this case we write 
0

lim
x x

1
 =  

    
and when x gets close to 0 from left,  

the values of f(x) = 
x

1
 become arbitrarily small negative.   

In this case we write 
0

lim
x x

1
 = -. See Figure 4.3.                                        Figure 4.3 

Definition 4.3: 
Let f be a function defined in a deleted neighborhood of c. 

i) We say that the left-hand limit of f(x) at c is infinity, and write 
cx

lim f(x) =  

     if for every real number M, we have f(x) > M for every x close to c from the left side of   

ii)    We say that the right-hand limit of f(x) at c is infinity, and write  
cx

lim f(x) =  

     if for every real number M, we have f(x) > M for every x  close to c from the right side if c. 
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iii) We say that the limit of f(x) at c is infinity and write 
cx

lim f(x) =  

      if and only if     
cx

lim f(x) =   and 
cx

lim f(x) =  

 
Definition 4.4: 
Let f be a function defined in a deleted neighborhood of c. 

i) We say that the left-hand limit of f(x) at c is negative infinity, and write 
cx

lim f(x) = - 

    if for every real number M, we have f(x) < M for every x close to c from        the left side of c. 
  

ii)     We say that the right-hand limit of f(x) at c is negative infinity, and write 
cx

lim f(x) = - 

     if for every real number M, we have f(x) < M for every x  close to c from the right side if c. 

iii)    We say that the limit of f(x) at c is negative infinity and write 
cx

lim f(x) = - 

       if and only if
cx

lim f(x)  = -  and 
cx

lim f(x) = - 

Example 4.18: For f(x) = 
x

1
, for x  0, 

0
lim
x x

1
 =    and   

0
lim
x x

1
 = -. Hence 

0
lim
x x

1
 does not 

exist. Whereas for f(x) = 
2

1

x
, x  0, 

0
lim
x 2

1

x
 =  = 

0
lim
x 2

1

x
. Hence 

0
lim
x 2

1

x
 = .   

In general, for any real number c and f(x) = 
cx 

1
 we have 

cx
lim f(x) = 

cx
lim

cx 
1

=  and  

cx
lim f(x)  = 

cx
lim

cx 
1

 = -.       

Definition 4.5:  
Suppose f is a function and c is a fixed real number.  We say that the line x = c is a vertical 
asymptote of the graph of f if and only if either  

   
cx

lim f(x) =      or   
cx

lim f(x) =  

    
Remark: From the above examples, we can see that the line x = 0 (i.e. the y-axis) is a vertical 

asymptote of the graphs of the functions f(x) = 
x

1
 and f(x) = 

2

1

x
, while the line x = c is a vertical 

asymptote of the graph of  f(x) =
cx 

1
. 

Example 4.19:  Find all the vertical asymptotes of f(x) = 
1

2
2 


x

x
 

Solution:   If c is any number different from 1 or -1, then by the Quotient Rule,  

       )(lim xf
cx

 = 
cx

lim
1

2
2 


x

x
 = 

1

2
2 


c

c
 R 

Thus any line x = c for c   1 cannot be a vertical asymptote.  
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For  c = 1, )(lim
1

xf
x 

= 
1

lim
x 1

2
2 


x

x
 = 

1
lim
x





















1

1

1

2

xx

x
 

           = 
1

lim
x





















 1

1
lim.

1

2
1 xx

x
x

 = 
2

3
() =  

Similarly, for c = -1, )(lim
1

xf
x 

= 
 1

lim
x





















1

1
.

1

2

xx

x
 

       = 
 1

lim
x




























 2

1

1

1
lim.

1

2
1 xx

x
x

 () = - 

Hence the lines x = 1 and x = -1 are vertical asymptotes of the graph of the function f(x) = 
1

2
2 


x

x
. 

Next, we try to investigate the behavior of a function f as x increases (or decreases) indefinitely, 

and try to see if we have 
x

lim f(x) or 
x

lim f(x). Such limits, if they exist, are in general called 

limits at infinite.  
Definition 4.6: 
i) Suppose f is a function defined on an interval of the form (c, ), for some  cR.  We say that 

the limit of f(x) as x approaches to infinity is the number L, and write 
x

lim f(x) = L if when 

      x is assigned sufficiently large positive values, the corresponding values of f approach to L.  

ii)  Suppose f is a function defined on an interval of the form (-, c) for some cR.  We say that 

the limit of f(x) as x approaches to negative infinity is the number L, and write
x

lim f(x) = L 

      if when x is assigned sufficiently small negative values, the corresponding values of f    
approach to L. 

 

Example 4.20:  Let f(x) = 
x

1
, for x  0. 

When x is assigned sufficiently large positive values, the values of f(x) = 
x

1
 become close to 0.  

Similarly for values of x sufficiently small negative values, f(x) = 
x

1
 becomes close to 0.  Hence  

x
lim

x

1
 = 0 and 

x
lim

x

1
 = 0. See Figure 4.3 above.  

Similarly,   
x

lim 2

1

x
 = 0, 

x
lim

2

1

x
 = 0 and in general, 

x
lim

  2  

1
cx

 = 0. 

 
Definition 4.7: 
If for a function f and a real number L,  

x
lim f(x) = L  or  

x
lim f(x) = L, then the line y = L is called 

a horizontal asymptote to the graph of f. 
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Thus the line y = 0 (i.e. the x-axis) is a horizontal asymptote for both the function f(x) = 
x

1
 and 

f(x) =  
2

1

x
.  See Figure 4.3 above. 

Example 4.21:  Find a horizontal asymptote to the graph of f(x) = 
52

13
2

2




x

xx
 

Solution:   Since we are interested with the behavior of f for large values of |x|, we divide both 
numerator and denominator of f by the leading exponent (i.e.x2) to get  

 f(x) =  
52

13
2

2




x

xx
 = 

22

2

222

2

52

13

xx

x
xx

x

x

x




 = 

2

2

5
2

11
3

x

xx




 

Then 
x

lim f(x) = 
x

lim
52

13
2

2




x

xx
= 







 







 





2

2

5
2lim

11
3lim

x

xx

x

x
 = 

02

003




 = 
2

3
 

Thus 
x

lim f(x) = 
2

3
 and the line y = 

2

3
is a horizontal asymptote to the graph of f. 

Similarly, 
x

lim f(x) = 
2

3
. 

Remark: For a rational function f(x) = 
)(

)(

xq

xp
, with deg(p)<deg(q), we find a horizontal asymptote 

by applying the above technique. 
As a combination of the above two subsections, it may happen that as the values of |x| increase 
without bound, the corresponding values of |f(x)| also increases without bound leading to what are 
generally called infinite limits at infinity. 

Definition 4.8: 
Let f be defined on an interval of the form (c, ), for cR.  We say that the limit of f(x) as           

x approaches to infinity is infinity, written 
x

lim f(x) =  whenever x is assigned sufficiently 

large positive values, the corresponding values of f(x) increase without bound. 
 
Remark:  Analogous definitions can be given for  

   
x

lim f(x) = -,  
x

lim f(x) =   and 
x

lim f(x) = -. 

Example 4,22:   For f(x) = x3, we have 
x

lim x3 =        and 
x

lim x3 = -   
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Example 4.23: 
x

lim
12

23
2

4




x

xx
 = 

x
lim

42

43

12

23
1

xx

xx




 = .       (By dividing by ). 

Definition 4.9: 
If for a function f and for two real numbers a and b 

x
lim [f(x) – (ax + b)] = 0, then the line  

y = ax + b is called an oblique (or a skew) asymptote to the graph of f. 

  In general, for a rational function f(x) = 
)(

)(

xq

xp
, we have  

i) When degree(p) < degree (q), 
x

lim f(x) = 0 and the x-axis is a horizontal asymptote of f. 

ii) When degree(p) = degree(q), then f has a horizontal asymptote given by the quotient of 
the leading coefficients of p and q. 

iii) When degree(p) > degree(q), then 
x

lim f(x) = , and in particularly if  

degree(p) = degree(q)+1, then f has an oblique asymptote obtained as a quotient when we 
divide p by q.  

Example 4.24:  Let f(x) = 
3

154 2




x

xx
, find all asymptotes of f. 

Solution:  Since )(lim
3

xf
x 

 = 
 3

lim
x 3

154 2




x

xx
 = , the line x = -3 is a vertical asymptote. 

By the long division method, we get f(x) = 
3

154 2




x

xx
 = (4x – 7) + 

3

20

x
   

  
x

lim [f(x) – (4x – 7)] = 
x

lim
3

20

x
 = 0 

Therefore, the line y = 4x – 7 is an oblique asymptote of f. 

 A special Limit in Exponential Function 

Consider the function f(x) = 
x

x






 

1
1   with domain (-, -1)  (0, )      

The following two tables indicate the behavior of the values of f(x) as x approaches to positive 
and negative infinity, respectively,  

 
x 2 10 100 1000 10,000 100,000 

)(xf  2.75 2.593743 2.704814 2.716924 2.718146 2.718268 

 
x -2 -10 -100 -1000 -10,000 -100,000 

)(xf  4 2.867972 2.731999 2.719642 2.718418 2.718295 
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As is tried to be indicated from the above tables, the values of 
x

x






 

1
1 tend to approach to an 

irrational number whose value is 2.7182818…. This number, denoted by e, is called the base of 
the natural logarithm, and plays an important role in calculus. 

Remark: The natural logarithmic function (with base e) is given by f(x) = xelog  and is denoted 

 by f(x) = nx. Its inverse, the natural exponential function is given by f(x) = exp(x) = ex. 
Thus from the above constructions, we have  
   
This limit has important consequences. 

Example 4.25:  
x

lim
3

1
1









 

x

x
 = 

x
lim

x

x






 

1
1 .

3
1

1 





 

x
              - Rule of exponents    

           = 
x

lim
x

x






 

1
1 . 

x
lim

3
1

1 





 

x
               - Product Rule  

            = e.13 = e  

In general, for any real number a, 
x

lim
ax

x









 

1
1  = e.   

Example 4.26:   Show that 
0

lim
t

  tt
1

1  = e 

Solution:  We prove this by showing that 
0

lim
t

  tt
1

1  = e = 
0

lim
t

  tt
1

1 . First use the 

substitution t = 
x

1
, so that x = 

t

1
and as x  , t  0+. Hence, 

0
lim
t

  tt
1

1  = 
x

lim
x

x






 

1
1 = e. 

Similarly, as x  -, t  0- . Hence, 
0

lim
t

  tt
1

1  = 
x

lim
x

x






 

1
1 = e 

Therefore, 
0

lim
t

  tt
1

1  = e =  
0

lim
t

   tt
1

1  
0

lim
t

  tt
1

1 = e. 

Example 4.27:   Evaluate  
x

lim
x

x






 

5
1  

Solution:  Let t = 
x

5
.  Then x = 

t

5
 and 

  
x

lim
x

x






 

5
1  = 

0
lim
t

   tt
5

1


   = 
0

lim
t

   51
1


 tt = 

51

0
)1(lim



 



  t

t
t =  e-5 = 

5

1

e
. 

In general, for any real number a, 
x

lim
x

x

a






 1  = ea. 

 

x
lim

x

x






 

1
1  = e = 

x
lim

x

x






 

1
1 . 
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 Continuity of a Function  

 
In our everyday usage, the word continuity refers to something that happens without any 
interruption.  In calculus, the term continuity is used to describe functions whose graphs can be 
traced without any break.  We shall give its formal definition using the concept of limits. 

Definition 4.10: 
- Let f be a function and c be a number in the domain of f.  f is said to be continuous at c  if 

    )(lim xf
ct

  = f(c)  

- If  f fails to be continuous at c, then we say that f is discontinuous (or not continuous) at c. 
- f is said to continuous if it is continuous at each point of its domain.  

 
Example 4.28:   Let f(x) = 2x and c = 1                                                          y 

Then )(lim
1

xf
x

= 
1

lim
x

2x  = 2                                                                             y = 2x 

and f(1) = 2(1)  = 2.                                                2 

Since x
x

2lim
1

 = 2 = f(1), f is continuous at 1.                                    

                                                                                                                    1                             x                             
In fact f is a continuous function.  See Figure 4.4.                                        
                                                                                                                            Figure 4.4 
Remark:  For a function f to be continuous at c, the following conditions must be satisfied 

a. f(c) must be defined 

b. 
cx

lim f(x) must exist 

c.  
cx

lim f(x) = f(c) 

   Otherwise if one of the above conditions is not satisfied, then f is discontinuous at c. 

Example 4.29:   Let f(x) = 













0,

0,2

0,3

2 xforx

xfor

xforx

 

Then f(0) = 2 so that f(0) is defined . )(lim
0

xf
x 

 = x
x

3lim
0

 = 0                        2              

and )(lim
0

xf
x 

 = 0lim 2

0



x

x
.  Thus )(lim

0
xf

x
 = 0 

But since )(lim
0

xf
x

  f(0) , f is not continuous at 0. .               y = 3x  

                                                                                                                                   Figure 4.5 

Example 4.30:  Let f(x) = sinx. Then, )(lim
2

xf
x 

 = x
x

sinlim
2


 = 1 = 2sin =  2f  

 Hence f(x) = sinx is continuous at 2 .  
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In fact f(x) = sinx is a continuous function.  Similarly, the functions f(x) = cosx, the exponential 

function with base a, f(x) = ax, the logarithmic function with base a, f(x) = xalog , the natural 

exponential function f(x) = ex and the natural logarithmic function f(x) = nx are all continuous 
functions in their respective domains. 
Theorem 4.6: Suppose f and g are functions with common domain such that both f and g are 
continuous at c.  Then  

1) f + g is continuous at c.  
2) f – g is continuous at c. 
3) if k is a scalar, kf is continuous at c. 
4) fg is continuous at c. 

5) if g(c)  0, 
g

f
 is continuous at c. 

 
Example 4.31: Let P(x) = anx

n + an-1x
n-1 + … + a2x

2 + a1x + a0 be any polynomial of degree n, and 

let cR, arbitrary. Then, 

 
cx

lim P(x) = 
cx

lim (anx
n + an-1x

n-1 + …+ a2x
2 + a1x + a0)= anc

n + an-1c
n-1 + …+ a2c

2 + a1c + a0 = P(c) 

Hence, P(x) is continuous at c, and since c was taken arbitrarily, every polynomial function is 
continuous. 

Example 4.32: Let f(x) = 
)(

)(

xq

xp
 be any rational function. Then if c is any real number such that 

q(c)  0, then    
cx

lim f(x) = 
cx

lim
)(

)(

xq

xp
 = 

)(lim

)(lim

xq

xp

cx

cx



  = 
)(

)(

cq

cp
 = f(c) 

Thus any rational function is continuous in its domain.   

From the above theorem we can see that f(x) = 5x2 – 4x + 7  is continuous in R, g(x) = 
4

1
2

3




x

xx
 

is continuous in R\{-2, 2}, h(x) = |x| cos x - 
2

3

x
 is continuous for x  0 and f(x) = 

1

5

x
 + nx is 

continuous for x(0, 1)  (1, ). 
 
As a generalization of the Power Rule for limits, we have the following theorem  

Theorem 4.7 (Substitution Rule):  Suppose f and g are real valued functions such that 
cx

lim f(x) = 

L and g is continuous at L. Then 
cx

lim g(f(x)) = g  )(lim xf
cx

 = g(L) 

Example 4.33:  For f(x) = sinx, g(x) = x , and c = 2 , we have )(lim
2

xf
x 

 = 1 and g is 

continuous at 1. Thus 
cx

lim g(f(x)) = 
cx

lim xsin  = 1  = 1. 
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Using Substitution Rule we have continuity of the composite of two functions as given by the 
following theorem.  
 
Theorem 4.8:  Suppose f and g are functions such that f is continuous at c and g is continuous at 
f(c).  Then, gof is continuous at c. 

 
Proof:   Since f is continuous at c, 

cx
lim f(x) = f(c). Now 

cx
lim (gof)(x) = 

cx
lim g(f(x)) = g  )(lim xf

cx
  = 

g(f(c)) = (gof)(c). Therefore, gof is continuous at c.  
 

Example 4.34:  For f(x) = x2 + 5, g(x) = ex and c = 1, we have (gof)(x) = g(f(x)) = 52 xe  and   

1
lim
x

(gof)(x) = 5

1

2

lim 



x

x
e  = e6 = 512 e  = e6. Thus, (gof)(x) = 52 xe  is continuous at 1. 

 

 Intermediate Value Theorem   

Recall that for a function f continuous on a closed interval [a, b] its graph can be traced between 
the points (a, f(a)) and (b, f(b)) without any break or interruption.  In this section we shall see an 
important application of continuous functions: namely, the Intermediate Value Theorem, and 
some of its consequences.                                                              y 

For a function continuous on [a, b], the                                                                  f 
intermediate value property asserts that if L                              f(b) 
is any number between (intermediate to) f(a )                               L                  
and f(b), then there is at least one number c              
between a and b whose image under f is L.                        

See Figure 4.6.                                                               a           c         b              x 
                                                                                                            f(a)                        Figure 4.6 

 
Theorem 4.9:   (Intermediate Value Theorem) 
Suppose f is continuous on a closed interval [a, b].  Let L be any number between f(a) and f(b), 

(either f(a)  L  f(b), or f(b)  L  f(a).  Then there exists a number c in [a, b] such that f(c) = L. 

 
Example 4.35:  Let f(x) = x2.  Then f is continuous on [0, 3] with f(0) = 0 and f(3) = 9.  By the 
Intermediate Value Theorem f assumes (takes on) every value between 0 and 9. For instance for L  

= 4, we have 2 [0, 3] with f(2) = 4, and for L = 7, we have 7  [0, 3] with f  7  = 7. 

Example 4.36:   Let f(x) = x3 + 2x2 + x = 4 on [-2, 1].  Show that there exists some c [-2, 1] 
such that f(c) = 4. 
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Solution:  f is continuous on [-2, 1] with f(-2) = 2 and f(10 = 8.  Since 2  4  8, it follows, by the 

Intermediate Value Theorem that there exists c [-2, 1] such that f(c) = 4. i.e. f(c) = c3 + 2c2 + c + 
4 = 4. In this case we can find such c by solving  
  c3 + 2c2 + c + 4 = 4 

 c3 + 2c2 + c = 0 

 c(c2 + 2c + 1) = 0 

 c ( c + 1)2 = 0 which gives  either c = 0 or c = -1 
Since both of these values are in [-2, 1], for this particular case we have two values in [-2, 1] with 
image under f equal to 4. 
 
One of the most important applications of the Intermediate Value Theorem is given in the 
following theorem. 
 
Theorem 4.10:  Suppose f is continuous on a closed interval [a, b] and assume that f(a) and f(b) 

have opposite signs.  Then there is at least one c (a, b) such that f(c) = 0. 

 
Proof:   Without loss of generality, assume that f(a) < 0 and f(b) > 0.  Then choose L = 0, between 
f(a) and f(b).  By the Intermediate Value Theorem, there is at least one c between a and b such 
that f(c) = L = 0. 
Remark:   This means that the equation f(x) = 0 has at least one root in the interval (a, b). 
Example 4.37:  The function f(x) = x3 – x – 2 is continuous on [1, 2]. f(1) = -2 < 0 and  f(2) = 4 > 
0. Thus there is a number c in (1, 2) such that f(c) = 0 or c3 – c – 2 = 0. 
Example 4.38:   Show that the graphs of y = ex and y = 3x intersect in the interval [0, 1] 
Solution:  Define the function f(x) = ex -3x. Then f is continuous on [0, 1] with f(0) = e0 -3(0) = 1 

-  0 = 1 > 0 and f(1) = e1 – 3(1) = e – 3 < 0.  Thus there is a number c (0, 1) such that f(c) = ec – 

3c = 0 and the graphs of y = ex and y = 3x intersect at c(0, 1). 
 

Exercise 4.1 

1. Evaluate the following limits, if they exist. 

a. 
4

lim
x

(7-2x)  b. 
2

lim
x 13

12




x

x
           c. 

3
lim
x 12

1




x

x
  

d. 
1

lim
x 1

12




x

x
                 e. 

2
lim
x 22

2




x

x
 f.         

 1
lim
x 1

1
1





x
x    

2. Find )(lim xf
cx 

, )(lim xf
cx 

 and )(lim xf
cx

, if it exists, for  

a. f(x) = cos x ,             at c = 6  

b. f(x) = 3x , at c = -3 
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c. f(x) = 







2,22

2,

xforx

xforx
,   at  c = 2 

d. f(x) = 






2,1

2|,1|

xfor

xforx
,   at c = -2 

3.  Evaluate each of the following limits, if it exists. 

a. 
3

lim
x

(2x2 -3x + 5)          b. 
0

lim
x

2xsinx            c. 
4

lim
x

(cos x)4   

d. 
263

lim
x

3

2

3

34




x

xx
               e.         

4
lim
x






  2

3
2

1
xx       f.     

1
lim
x

4 3 97 x  

g. 
0

lim
x x

x

tan

sin
          h.      

0
lim
x 25

)3sin()2sin(

x

xx
      i. 

0
lim
x x

x

4sin

3sin
     

4. Evaluate the following limits, if they exist  

a. 
3

2
lim

3  xx
                          b.      

 21 1
lim

 x

x
x

       c. 
1

4
lim

 xx
  

d. x
x

coslim


                        e.      
2

3

2

1
lim

x

x
x




  f.       
15

532
lim 3

3




 x

xx
x

 

  5.        Find all the asymptotes, if any, for the following functions  

             a.  f(x) = tanx       b.    f(x) = 
4

92




x

x
                c. f(x) = 

2

3

)1(

123




x

xx
 

 6.       Evaluate the following limits, if they exist. 

             a. 
t

lim
4

1
1









 

x

x
       b. 

t
lim

x

x











1

4
1            c. 

t
lim

1

12

32











 x

x

x
 

7. Check whether or not the following functions are continuous at the indicated points. 
a. f(x) = x2 + 1,  at c = 2  b. f(x) = |x2 – 1|, at c = -1, 0, 1 

          c. f(x) = 
2

3

x
, at c = 2   d. f(x) = 







1,3

1,2

xfor

xforx
 , at c = 1 

8.Show that the following equations have roots in the indicated intervals. 

  a) logx = 0, in 



 2,
2

1
  b) 2x – 2 = 0, in [0, 2]  c) cos x – x = 0, in  2,0   

9.   Using the Intermediate Value Theorem show that the graphs of f and g intersect in the    
given interval. 

a. f(x) = x3 + 4x + 2 and g(x) = -1, in [-1, 0] 
b. f(x) = 2sinx and g(x) = 1 – x, in [0, 2] 

c. f(x) = x nx and g(x) = sinx, in 



 e
e

,
1
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4.2. Derivatives  

Objectives  
At the end of this section you should be able to  

 get acquainted with the concept of the derivatives of a function. 

 evaluate the derivative of elementary functions using the definition. 

 find the slope and equation of a tangent line to a curve at a given point. 

 evaluate the derivatives of combinations of functions. 

 find the derivatives of polynomial and rational functions. 

 have a good understanding of the Chain Rule.  

 apply the Chain Rule to evaluate derivatives of composite functions and algebraic 
functions.  

 find the derivative of the logarithmic function. 

 find the derivative of the exponential function. 

 apply the above derivatives to the natural logarithmic and natural exponential functions as 
special cases.  

 evaluate derivatives of composite functions with the logarithmic and exponential 
functions. 

 have an understanding of the derivative of a derivative. 
 

Using the concepts discussed in section 4.1, we are now ready to study one of the central concepts 

of calculus: the derivative of a function.  Even though the derivative is connected with finding the 

tangent lines to curves at a point, its main applications are in finding rates of change of variable 

quantities relative to the change in another quantity. 

Consider a function f continuous at a point c in its domain. 

Then, by definition of continuity )(lim xf
cx

 = f(c)                          y                f 

This means for x close to c, f(x) is                                           f(x)                        
close to f(c).  If we denote the                                                 f(c) 
increment (or change) x – c in the   
x-direction by h = x – c (so that x = c + h) as  
is seen in Figure 4.7,                                                                     
then the corresponding change in the y-direction      
                                                                                                                   c    x           x                                                                                                    
is given by                                                                                         Figure  4.7 
  f(x) – f(c) = f(c + h) – f(c). 
The ratio of these two increments is given by  

  
cx

cfxf


 )()(
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and is called the difference quotient of f at c. 
For instance, if f(x) = x2 + 2   and c = 3, then  

  
3

)3()(




x

fxf
 = 

3

)23()2( 22




x

x
 = 

3

92




x

x
 

We shall define the derivative of a function of f at c as the limit of the above difference quotient, 
if  the limit exists. 
Definition 4.11  
Let c be a number in the domain of a function f.  If  

  
cx

lim
cx

cfxf


 )()(

 

exists, we call this limit the derivative of f at c, and denote it by (c), so that  

  (c) = 
cx

lim
cx

cfxf


 )()(

 

If this limit exists we say that  has a derivative at c, or  is differentiable at c or (c) exists.  
Remarks: 1.   Observe that we can alternatively write  

 (c) = 
0

lim
h h

cfhcf )()( 
 

 since for h = x – c, we have x = c + h and as x  c, h  0. 

2. The notation (c) is read as “the derivative of f at c” or for short “f prime at c”.   

           Other notations are given by )(c
dx

df
 or Df(c) 

3. The quantity f(c) describes the rate of change of the function f around the point (c, f(c)). 

Example 4.39:   Let f(x) = 2x + 3.  Then, for any c R, the point (c, f(c)), we have  

(c) = 
cx

lim
cx

cfxf


 )()(

 = 
cx

lim
cx

cx


 )32()32(

= 
cx

lim
cx

cx


 22

 = 2
cx

lim
cx

cx




 = 2
cx

lim (1) = 2. 

Since cR is arbitrarily taken, we have for f(x) = 2x + 3, (x) =2  for all xR. 
In fact for any linear function f(x) = ax + b, we have 

                     (c) = 
cx

lim
cx

cfxf


 )()(

 = 
cx

lim
cx

bacbax


 )()(

 = a 
cx

lim
cx

cx




 = a 

for any c R.  Thus (x) = a 
Note that the graph of a linear function is a straight line and the rate of change (a constant) is 
measured by the slope of the line. 

Example 4.40:   Let f(x) = 3x2 + 5.  Then for any xR  
  f(x + h) = 3(x + h)2 + 5 = 3x2 + 6xh + 3h2 + 5 and  

  (x) = 
0

lim
h h

xfhxf )()( 
  = 

0
lim
h h

xhxhx )53()5363( 222 
 

   = 
0

lim
h h

hxh 236 
 = 

0
lim
h h

hxh )2(3 
 = 3

0
lim
h

(2x + h) = 6x. 

Thus, for f(x) = 3x2 + 5,   (x) = 6x for any xR. 
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In particular, when c = 1, (1) = 6(1) =. 6 is the slope of the tangent line to the graph of f at (1,8) 
Example 4.41: Let f(x) = c, where c is a constant. 

Then for any xR, 

 (x) = 
0

lim
h h

xfhxf )()( 
= 

0
lim
h h

cc 
 = 

0
lim
h

0 = 0.        

Thus, for f(x) = c, a constant, (x) = 0 for all xR. 

Hence, for f(x) = 15, (x) = 0, for f(x) = - 2 , (x) = 0, and so on. 
Applying the above definition, we can get the following derivatives. 

 (x) (x)  (x) (x) 

f(x) = 
x

1
 (x) = 

2

1

x


, for all x  0 

f(x) = sinx (x) = cosx, for all xR 

f(x) = x  (x) = 
x2

1
, for x > 0 

(x) = cosx (x) = -sinx, for all xR, 

Using the definition to evaluate the derivative of more complicated combinations and 
compositions of functions becomes cumbersome.  At this stage the student must be able how to 
find the derivatives of various types of functions quickly and efficiently without always resorting 
to the definition. In the table below we list some techniques of differentiation which can be 
proved using the definition.  

 
 
 
 

 

 

 

 

 

Thus, if (x) = x4,   then (x) = 4x3 and if g(x) = x12, then (x) = 12x11, and so on. 
 
Example 4.42:  Let f(x) = x2 + 3 and g(x) = sinx.  Then  

 ( + g)(x) = (x) + g(x) = 
dx

d
(x2 + 3) +

dx

d
 (sinx) = 2x + 0 + cosx   = 2x + cos x  

  
dx

d
(g(x) – 4(x)) = 

dx

d
(sinx) - 4

dx

d
(x2 + 3) = cosx – 4(2x + 0) = cos x – 8x. 

Since polynomials are sums or differences of constant multiples of powers of x, the first four rules 

help us to evaluate their derivatives. 

Theorem 4.11: Suppose  and g are differentiable at c, and k is a constant, then  

a) (kf)(c) = k (c)  …                        Constant Rule  

b) (f + g)(c) = (c) + g(c)  …    Addition Rule  

c) (f – g)(c) = (c) – g(c) …    Difference Rule 

d)  f(x) = xn, n an integer, (x) = n xn-1  …    Power Rule 

d)         (g)(c) = (c) g(c) + (c) g(c)     …     Product Rule 

e) 
2)]([

)()()()(
)(

cg

cgcfcgcf
c

g

f 












 provided g(c)  0 …  Quotient Rule 

f) (gof)(c) = g(f(c)). (c)   …..    The Chain Rule 
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Remark:    Given a polynomial of degree n, P(x) = anx
n + an-1x

n-1 + … + a2x
2 + a1x + a0 

 P(x) = 
dx

d
(anx

n + an-1x
n-1 + … + a2x

2 + a1x + a0) 

        = an
dx

d
(xn) + an-1

dx

d
(xn-1) + … + a2

dx

d
(x2) + a1

dx

d
(x) + 

dx

d
(a0). 

        = nanx
n-1 + (n-1)an-1x

n-2+ … + 2a2x + a1 

Example 4.43:  For p(x) = 5x4 – 2x3 + x2 + 7x – 1, we have p(x) = 20x3 – 6x2 + 2x + 7. 

 For q(x) = 6x3 + 2 x2 – 3x + , we have q(x) = 18x2 + 2 2 x – 3. 
 
As an application of the product rule, we have the following examples. 

Example 4.44:  Let k(x) = 2x sinx.  Find k(x). 

Solution:  If we put f(x) = 2x and g(x) = sinx, then (x) = 2 and g(x) = cosx. 

 Thus, k (x) = (x)g(x) + (x)g(x) = 2sinx + 2xcosx. 
 
Remark: In practice, to evaluate the derivative of a product of two functions, we do not need to     
identify which one is f and which one is g. 
Example 4.45:  Let h(x) = x3 cosx.  Then 

  h(x) = (x3) cosx + x3(cosx)= 3x2cosx + x3(-sinx)   = 3x2cosx – x3 sinx.   
For the derivative of the product of three functions f, g and h, we have  

  (fgh)(x) = f(x)g(x)h(x) + f(x)g(x)h(x) + f(x)g(x)h(x). 

Example 4.46:   Let k(x) = x3 sinx cosx.  Find k(x). 

Solution: Put f(x) = x3, g(x) = sinx and h(x) = cosx in the above statement with (x) = 3x2, g(x) 

= cosx and h(x) = -sinx. Then k(x)  = 3x2 sinx cosx + x3 cosx.cosx + x3sinx(-sinx)= 3x2 sinx cosx 
+ x2 cos2x – x3 sin2x. 
 

The Quotient Rule is used to find the derivative of any rational function. If f(x) = 
)(

)(

xq

xp
, for p, q 

polynomials, we then have f(x) = 
1

)(

)(








xq

xp
 = 

2))((

)()()()(

xq

xqxpxqxp 
, for q(x)  0. 

Example 4.47:  Let f(x) = 
12

53 2




x

x
.  Find (x) 

Solution:    Putting p(x) = 3x2 – 5  and q(x) = 2x + 1, we get  

 (x) = 
 2

2

12

)2)(53()12(6




x

xxx
 = 

 2

22

12

106612




x

xxx
 = 

 2

2

12

1066




x

xx
 

As an important consequence of the Quotient Rule, we can now find the derivatives of the 
remaining four trigonometric functions.  

Example 4.48:   Let f(x) = tanx.  Show that (x) = sec2x 
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Solution:   (x) = tanx = 
x

x

cos

sin
.  Then  

(x) = 
dx

d
(tanx) = 

1

cos

sin








x

x
= 
 

2

11

)(cos

)(cossincossin

x

xxxx 
 

        = 
x

xxxx
2cos

)sin(sincos.cos 
 

         = 
x

xx
2

22

cos

sincos 
 = 

x2cos

1
 =  sec2x.                               

In the same manner, we can show that  

 
dx

d
(cotx) = -csc2x, 

dx

d
(secx) = secxtanx   and 

dx

d
(cscx) = -cscx.cotx. 

The Chain Rule states that (gof)(x) = g(f(x)) (x), for all x such that f is differentiable at x and g 
is differentiable at f(x). 
Example 4.49:  Find the derivative of h(x) = cos(x2 + 1) 
Solution:  Let f(x) = x2 + 1 and g(x) = cosx. Then, h(x) = (gof)(x) = g(f(x)) = g(x2 + 1) = cos(x2 + 

1) and h(x) = g(f(x)). (x) = -sin(x2 + 1) . (x2 + 1) = 2xsin(x2 + 1). 
           
If a and b are any real numbers, we can easily show that 

 
dx

d
(sinax) = a cosax     and 

dx

d
(cosbx) = -bsinbx 

Thus, 
dx

d
(sin4x) = 4 cos4x and 

dx

d
(cos5x) = -5 sin5x 

Example 4.50: Find the derivative of h(x) = (1+3x -5x)12 
Solution:  Let f(x) = 1 + 3x – x5 and g(x) = x12.  Then h = gof and  

h(x) = 
dx

d
(1+3x – x5)12 = 12(1 + 3x – x5)11 (1 + 3x – x5) = 12(3 – 5x4) (1 + bx – x5)11. 

Example 4.51:  Find the equations of tangent and normal lines to the semicircle  

                 y = f(x) = 21 x  at 








2

3
,

2

1
 

Solution: The slope of the tangent line T is given by the derivative of y = f(x) = 21 x  at x = 

2

1
.  Thus, by Chain Rule,  

                     (x) = 
dx

dy
 = 

dx

d 21 x  = 
212

1

x
(1- x2) =

212

2

x

x




 = 

21 x

x




 

so that the slope of T is  

m =  







2

1
 = 

411

21




  = -
2

1
.

3

2
 = 

3

1
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and since the tangent line passes through the point 








2

3
,

2

1
, its equation in slope-point form is  

 y - 
2

3
 = -

3

1






 

2

1
x      or        x + 3 y – 2 = 0 

The slope of the normal line at 








2

3
,

2

1
 is 3  and its equation is  

 y - 
2

3
 = 3 






 

2

1
x      or   y - 3 x = 0.   

Remark: The Chain Rule can be extended to more than two functions. 
Suppose   k(x) = (hogof)(x) = h(g(f(x))) and let f be differentiable at x, g be differentiable at   f(x) 

and h be differentiable at g(f(x)).  Then k(x) = (hogof)(x) = h(g(f(x)).gf(x)).  f(x) 

Similarly, if (x) = (kohogof)(x) = k(h(g(f(x)))), then  

        (x) = (kogohof)(x) = k(h(g(f(x)))). h(g(f(x)).g(f(x)).f(x). 
You can now see why this method is called the Chain Rule! 
Example 4.52:   Find the derivative of the function  

  k(x) = cos 32 2 x   

Solution:   Let k(x) = cosx 32 2 x  = h(g(f(x))) with 

 f(x) = 2x2 – 3,    g(x) = x  and h(x) =cosx.  Then  

 k(x) =  32cos 2 x
dx

d
 = h(g((x)). g((x)) (x)  

         = - sin 32 2 x  . 
322

1
2 x

.4x  = 
32

32sin2
2

2





x

xx
 

 

Example 4.53:   Let f(x) = sin(tanx2).  Find (x) 

Solution:   (x) = 
dx

d
(sin(tanx2)) 

       = cos (tanx2) sec2x2(2x) = 2x.cos(tanx2) sec2x2. 
  

 Derivatives of Logarithmic and Exponential Function  

 
Recall that for a > 0, and a  1, the logarithmic function with base a is given by  

   f(x) = xalog     for x > 0. 

In particular, when a = e, we get the natural logarithmic function  

  f(x) = xalog  = nx  , for x > 0. 
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 From Theorem 4.12, when the base a = e , it follows that  

 xelog = (nx) = e
x elog
1

 = 1.
1

x
 = 

x

1
 :  i.e. 

Also, by applying change of base of logarithms, we get  

 xalog  = e
x alog
1

 = 
a

e

x e

e

log

log1
 = 

ax ln

1
.

1
: i.e. 

Example 4.54: For (x) = x5log , we have (x) = e
x 5log
1

 = 
5ln

1

x
 

Example 4.55:  Find the derivative of the following  

a) f(x) = log3(x
2 + x – 1)  b) g(x) = 

x

x

ln
 

            
       

Solution:  a) (x) = e
xx

32
log.

1

1


 (x2 + x – 1) = e

xx

x
32

log.
1

12




 

b) g(x) = 









x

x

ln
 = 

2)(ln

1
.ln.1

x
x

xx 
= 

x

x
2ln

1ln 
 

Theorem 4.13:   Let a > 0, a  1 and let f(x) = ax.  Then, (x) = (ax) = 
e

a

a

x

log
. 

 
By applying change of base we also have  

 
 
 

When the base a = e, we get (ex) = 
e

e

e

x

log
 = exne = xx.1 = ex: i.e. 

  Example 4.56:  For f(x) = 3x, we have (x) = 
e

x

3log

3
 = 3x n3. 

Example 4.57: Find the derivative of the following  

a) f(x) = 1xe    b) g(x) = 3sinx 

c) f(x) = xex 4   d) g(x) = 
2xe nx 

Theorem 4.12:   Let a > 0, a  1 and let f(x) = xalog .  Then  

          (x) = x
x alog
1  

 
x

x
1

ln   

 
ax

xa ln

1
log   

(ax) = 
e

a

a

x

log
 = ax n a 

(ex)= ex 
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Solution:   a)    By using the Chain Rule, we get  

 (x) =  1xe  = 1xe .  1x   = 1xe , 
1

1

x
 = 

1

1





x

e x

  

b) (3sinx) = 3sinx, n3. (sinx) = n3.cosx.3sinx   

c) xex
dx

d 4  =  
xex 42

1


 (x + e4x)  = 

x

x

ex

e
4

4

2

41




 

d) By the Product Rule and Chain Rule we get:  

 g(x) =  xe x ln
2

 = 
2

2 xxe nx + 
2xe .

x

1
=

2xe 





 

x
xx

1
ln2  

 

 Higher Derivatives 

          
If a function f is differentiable at a point x in its domain, we denote its derivative by (x), where  

  (x) = 
h

xfhxf
h

)()(
lim

0




 , provided the limit exists. 

This derivative is usually called the first derivative of f at x.  

If the new function  is differentiable at a point x, then we can repeat the process and find its 
derivative as  

 ((x)) = (x) =
h

xfhxf
h

)()(
lim

0




,      provided the limit exists. 

we call (x) the second derivative of f at x, and it is often read as “ double prime of x”. 

 Observe that (x) is simply the derivative of the function  at x and is no more difficult than 
finding the first derivative.  

Example 4.58:  If (x) = nx, then (x) = 
x

1
 and hence (x) = 








xdx

d 1
 = 

2

1

x


.  

 We can similarly find the derivative of (x) to get  

  ((x)) = (x) = 
h

xfhxf
h

)()(
lim

0




, and so on, 

and call this the third derivative of f at x. 

Thus, for f(x) = nx, (x) = 
x

1
, (x) = 

2

1

x


 and (x) =

3

2

x
     

These derivatives when they exist are called higher derivatives (or derivatives of derivatives)  

The nth derivative [n](x) can also be denoted by )(x
dx

fd
n

n

. 
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Thus the second derivative is (x) or [2](x) or )(2

2

x
dx

fd
 and the third derivative is (x) or 

[3](x) or )(
3

3

x
dx

fd
. 

Example 4.59:  Find the higher derivatives of the following  
a) f(x) = 4x3 + x2 – 3x + 7  b) g(x) = ex 

c) f(x) = sinx    d) g(x) = n(3x) 
Solution:   a)   For f(x) = 4x3 + x2 – 3x + 7, we have  

 (x) = 12x2 + 2x – 3 

 (x) = 24x + 2 

 (x) = 24 

 [4](x) = 0 and for n  4,  [n](x) = 0 

b) For g(x) = ex, g(x) = ex, g(x) = ex, and in general for n > 1, g[n](x) = ex 

c) f(x) = sinx  , (x) = cos x 

 (x) = -sinx  , (x) = -cosx 

 [4](x) = sinx  and  so on   

d) g(x) = n(3x)        , g(x) = 
xx

1

3

3
         by Chain Rule 

 g(x) = -
2

1

x
      , g(x) = 

3

2

x
  ,  g[4](x) = 

4

2.3

x
 , … 

 
Exercise 4.2 

1. For each of the following functions, find (c) using the definition 
a. f(x) = 2x – 4,   at c = 1  b.  f(x) = x2 + 3,  at c = -1 
c. f(x) = x3 – 2  at c = 0  d.  f(x) = |x + 2|,  at c = 2 

2. Find the equations of the tangent and normal lines to the graph of f at the given point. 

a. f(x) = x2 + x – 1, at (2, 5)  b. f(x) = x ,  at (4, 2)  

c. f(x) = 2cosx,  at ( 2 , 0)  d. f(x) = 
x

1
,  at (2, 

2

1
) 

3. Find the derivative of the following functions  

a. f(x) = (x2 – 5) cosx   b. g(x) = x  secx     

c.   
3

52
2

3




x

xx
     d. g(x) =  

x

x

tan

2
     

4. Find the equations of the tangent and normal lines to the functions at the indicated point. 

a. f(x) = sinx cosx,  at  21,4  

b. f(x) 
12 x

x
 ,     at  21,1         
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5. Find the derivative of the following functions. 

a.    f(x) = tan3x             b.  g(x) = x 21 x             c.    f(x) = Error! Objects 

cannot be created from editing field codes. sin x2 

d.    g(x) = 
 42

1

xx 
      e.  f(x) = 122  xx   f.    g(x) = xcosx + 3 45 x  

g.    f(x) = sin 12 x      h.    g(x) = 
xx

x

1

cot


 i.    f(x) = etanx 

 j.    g(x) = n(nx)               k.    f(x) = (nx + xe )3       l.   f(x) = n2x + nx2 
6. Find the first, second and third derivatives of the following function  

   a.  f(x) = 
2xe             b. g(x) = secx 

   c.  f(x) = sin(2x) + cos(3x)          d. g(x) = n(sinx) 
 

4.3. Applications of the derivative  

At the end of this section you should be able to:  

 define maximum and minimum values of a function on a given interval. 

 explain the fundamental theorem of local extrema values. 

 identify the regions where a function is increasing and decreasing. 

 apply the first and second derivative tests to find local extrema values of a function.  

 solve practical problems related to extrema.  

 state the important points that are necessary to sketch the graph of a function. 

 sketch the graph of a function applying the above concepts. 

 solve related rates problems. 
 
At the beginning of this unit we have mentioned that the derivative of a function at a point c in its 
domain measures the rate of change of the function around that point.  In this section we shall see 
how the derivative can be applied to solve a variety of problem in the areas of engineering, the 
natural sciences, business and the social sciences.  We see how it can be used to solve maximum 
and minimum values of a function (i.e., where it has “peaks” and where it has “valleys”), where it 
curves upward and where it curves downward, and in general, to sketch the graph of the function.  
At the end we shall introduce related rates problems and see how to solve them using the 
derivative.  

a) Extrema of a Function  

Definition.  Let    be a function defined on an interval I.  If there is a number d in I such that f(x) 

 f(d) for all x in I, then f(d) is called the maximum value of f  
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on I. Similarly, if there is a number c in I such that f(x)  f(c) for all x in I, then f(c) is called the 
minimum value of f on I.  (See Figure 4.8)  A value of f that is either a maximum value or a 
minimum value of f on I is called an extreme value of f on I. 

Remark: If the set I is the domain of the function f and if f has a maximum value on I, then 
this maximum value is called the (absolute or global) maximum of f.   
Similar for minimum value of f. 

  Example 4.60:  Let f(x) = x2 on I = [-2, 4].  Then 
f has the maximum value of 16 = f(4) and  
the minimum value of 0 = f(0).  Both 0 and  
16 are extreme values of f.  
- On the interval [-2, 4), the minimum value of     Figure 6.6 
   f is 0 but f has no maximum.  
- On the interval (0, 4) f has neither a maximum  
   nor a minimum. See Figure 4.8.                                                      Figure 4.8   

Example 4.61:  Let f(x) = 
x

1
 for x  0. 

The domain of f is I = (-, 0)  (0, ) and  
f has neither a maximum nor a minimum  
value on I.  See Figure 4,10         
- On the interval [-1, 0] f has the maximum  

value -1 = f(-1), but no minimum.      

-  On the interval (0, 2] f has the minimum value )2(
2

1
f ,                            

but has no maximum.  
- On the interval [-1, 2], f has no extrema.                                               Figure 4.9 
  Note that in the first example when the interval is open we have no extrema, while in the second 

example, when the function is not continuous, we had no extrema.  Continuity of a function on a 
closed interval gives us a sufficient condition for the existence of both extreme values. 

 

 

 

Hence the function f(x) = x2 for -2  x  4 has both extreme values on [-2, 4].   

Similarly, the function f(x) = x3 – 4x + 5     for     0  x  2   which is continuous on [0, 2] has a 
maximum and a minimum value on [0, 2], by Theorem 4.14.  Even though the above theorem 
tells us about the existence of extreme values on [a, b], it does not tell us where they occur or how 
to find them.  The following theorem will help us in determining such values.  

 
 

Theorem 4.14: (Maximum-Minimum Theorem).  Let f be continuous on a closed 
bounded interval [a, b].  Then f has a maximum and a minimum value on [a, b]. 

Theorem 4.15:   Let f be defined and continuous on [a, b].  If f has an extreme value 

at c in (a, b) and f is differentiable at c, then (c) = 0. 

x
xf 1)( ofGraph 
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Example 4.62: Let f(x) = x3 - 3x + 1.   

Then  is differentiable and the  

critical points of   are the values  

of x for which (x) = 0, 

         But  (x) = 3x2 – 3 = 0 

  3(x – 1) (x + 1) = 0 

  x = 1 and x = -1 are critical points of  f.  

                                                                                                               Figure 4.10 
If we want to find extreme values of f on, say, the interval [-3, 3] we compute and compare the 
values of f at -3, -1, 1 and 3 to get f(-3) = 17 , f(-1) = 3, f(1) = -1 and f(3) = 19. 
Thus the minimum value of f on [-3, 3] is -17 which occurs at -3 and the maximum value of f is 
19 which occurs at 3.  

 Monotonic Functions  
One of the important points needed to sketch the graph of a function is to find the regions in 
which the graph slopes upward to the right (increases) or it slopes downward to the right 
(decreases) as seen in Figure 4.11 (a) and (b), respectively.  
                                  y                                                    y 
 
 
                                                     x                                                        x 
 

 
(a)            (b) 

    Figure 4.11 
Definition 4.12:  Suppose f is a function defined on an interval I. 

i) f is said to be increasing on I if f(x1)  f(x2) whenever x1 < x2 

ii) f is said to be decreasing on I if f(x1)  f(x2) whenever x1 < x2 
iii)       f is said to be monotonic on I if f is either increasing or decreasing on I. 
Remark: we can similarly define the terms strictly increasing, strictly decreasing and strictly 

monotonic by replacing   by < and   by >. 

Example 4.63:  Let f(x) = x2-1.   
Find the intervals of monotonicity of f. 

Solution:   For x1, x2 (-, 0) with x1 < x2, we have  

  f(x1) = 2
1x  -1 > 2

2x  -1 = f(x2) 

 f is strictly decreasing on (-, 0). 

For x1, x2 (0, ) with x1 < x2, we have  

  f(x1) = 2
1x  -1 < 2

2x  -1 = f(x2) 
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  f is strictly increasing on (0, ).                                           Figure 4. 12                                                                       
The derivative of a function gives us a test for monotonicity as is indicated in the following theorem. 

 

 

 

 

Example 4.64: Find the intervals over which the following function f(x) = x3 – 3x + 1is 
monotonic. 

Solution:  For f(x) = x3 – 3x + 1, (x) = 3x2 – 3 = 3(x – 1) (x + 1) 

To find the intervals over which  is increasing and decreasing we find the sign of (x) using the 
critical points x = 1 and x = -1 and the Sign Chart Method. 
 
                                      -1                 1 
 x – 1   - - - - - - - - - - - - - - - 0 + + + + + ++ + +  
 x + 1   - - - - - - -  0 + ++ + + + + + + + + + + + + 

 (x)    + + + + +  0 - - - - - -  0 + + + + + + + + + 

 
From the above “sign chart” we can see that  

(x) > 0 for x (-, -1)  (1, ) and (x) < 0 for x (-1, 1).   

Thus  is strictly increasing on (-, -1)  (1, ) and strictly decreasing on [-1, 1].See Figure 4.10. 

 The First and Second Derivative Tests for Relative Extrema  
 

If  is a differentiable function, we have seen that at relative extreme values  

(c) = 0.  Thus in order to locate relative extreme values of  we find the values of x for which 

(x) = 0 or (x) does not exist.  But this method does not help us to determine which of these 
values of x give relative extreme values (or which value is a maximum or which is a minimum).  

The next two theorems will provide us with conditions that guarantee that  has relative extreme 
values.  These conditions will also help in sketching the graphs of functions and in solving 
applied problems.  
  
 
 
 
 
 
 
 
 

Theorem: 4.16   Suppose f is continuous and differentiable on an interval I. 

i) If (x) > 0, for every x I, then  is strictly increasing on I. 

ii) If (x) < 0, for every x I, then  is strictly decreasing on I.   

Theorem 4.17:  (The First Derivative Test)  
Let f be continuous on an interval I, and let c I. 

a) If (x) changes its sign from positive to negative at c 

i.e. if (x) > 0 to the left of c and (x) < 0 to the right of c, then  has a 
relative maximum value at c. 

b) If (x) changes its sign from negative to positive at c, then  has a relative 
minimum value at c. 



189 
 

 
Example 4.65:  Consider again the function f(x) = x3 – 3x + 1. 

(x) = 3x2 – 3 = 3(x – 1) (x + 1) = 0 gives the critical points x = 1 and x = -1  

For the critical point x = -1 check the sign of  at -2 and 0 with (-2) = 9 > 0 and (0) = -3 < 0.  

Thus (-1) = 3 is a relative maximum value of f. 

Similarly taking the critical point x = 1 between 0 and 2, we get (0) = -3 < 0 and (2) = 9 > 0.  
Thus f(1) = -1 is a relative minimum value of f. (See Figure 4.11 above) 
  
The above theorem  needs to check the signs of two distinct points to the left and to the right of 
each critical point. The next theorem  makes use of the sign of the second derivative directly at 
the critical points. 
 
 
 
 
 
 
 
 
Example 4.66:  Consider again the function f(x) = x3 – 3x + 1 with (x) = 3x2 – 3 = 3(x – 1) (x + 

1). We have (1) = (-1) = 0 and (x) = 6x. Since (-1) = -6 < 0, (-1) = 3 is a local maximum 

value of f. Since (1) = 6 > 0, (1) = -1 is a local minimum values of f. 
 

Example 4.67: Let  f(x) = 
4

4
2 x

x
,  Find the local extreme values of f. 

Solution: (x) = 
22

2

)4(

)2(4)4(4




x

xxx
,   Quotient Rule. 

     = 
22

22

)4(

8164




x

xx
 = 

22

2

)4(

416




x

x
 

(x) = 0  16 – 4x2 = 0  x = 2 or x = -2 

(x) = 
42

2222

)4(

)2)(4(2)416()4(8




x

xxxxx
 - Quotient Rule and Chain Rule  

 = 
32

2

)4(

)12(8




x

xx
     - Simplification. 

Thus (2) = 
38

)8(16 
 = 

4

1
 < 0   f(2) = 1 is a local maximum value of f and  

(-2) = 
38

)8(16 
 = 

4

1
 > 0    f(-2) = -1 a local minimum value of f. 

Theorem: 4.18  (The Second Derivative Test) 
Let f be differentiable in an interval I and let c I with (c) = 0. 

a) If (c) < 0, then (c) is a relative maximum value of f. 

b) If (c) > 0, then (c) is a relative minimum value of f. 

If (c) = 0, then we can not draw any conclusion about f(c). 
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 Practical Applications of the Extrema  

 
A lot of practical problems can be expressed as a continuous function on a closed and bounded 
interval we may be interested to find points where f attains its maximum or its minimum values.  
For instance we may be interested in finding the maximum area of a region to be enclosed by a 
fixed perimeter; the minimum distance from a fixed point to a curve.  In economics a function 
may represent a profit or cost function and we may want to find the value of x to find maximum 
profit and minimum cost, and so on.  The Maximum – Minimum Theorem and the first and 
second derivative test will be crucial in finding such points as are illustrated in the following 
examples. 
Example 4.68: A landowner wishes to use 2000 meters of fencing to enclose a rectangular 
region.  Suppose one side of the land lies along a river and does not need fencing.  What should 
be the sides of the region in order to maximize the area?  
Solution:  Suppose the rectangle is to have length x and width y meters as seen in Figure 4.13.                                                           

x 
Since the length of the fencing is                                      
2000 meters, we have                                                                                                 y 
 x + 2y = 2000                                                  

 2y = 2000 – x     y = 1000 - 2x                            

                                                                                                      Figure 4.13 
 
The area of the rectangle is A = xy which can be written as a function of x alone as  

 A(x) = xy = x(1000 - 2x ) = 1000x - 
2

2x
  for 0  x  2000 

Thus we find the maximum value of A on [0, 2000]. 

 A(x) = 1000 – x = 0   x = 1000 is a critical point. 
Comparing the value of A at the critical point and at the endpoints 0 and 2000, we get  
 A(0) = 0, A(1000) = 500,000  and   A(2000) = 0  (check!) 
Thus the maximum value of A occurs when x = 1000 so that  

 y = 1000 - 2x  = 1000 – 500 = 500. 

Consequently, to enclose maximum area, the fence should have a length of 1000 mts and a width 
of 500 mts.   
Example 4.69:   Ethiopian Airlines offers a round trip discount on group flight from Addis Ababa 
to Lalibela. If x people sign up for the flight, the cost of each ticket is to be 1000 – 2x Birr. Find 
the number of people the airline gets maximum revenue from the sales of tickets for the flight,  
Solution:  Since individual cost of a ticket is 1000 – 2x, the total cost of the group will be 
   C(x) = (1000 – 2x)x = 1000x – 2x2.  

To find a critical point, we solve  C(x) = 1000 – 4x = 0, which gives the only critical point 
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       x = 250 of C(x). 

You can easily check that for x < 250, C(x) > 0 and for x > 250, C(x) < 0.  Thus by the First 
Derivative Test C has an (absolute) maximum value at x = 250.  
The maximum revenue the airline gets from the sales of 250 tickets is then 
      C(250) = 1000(250) – 2(250)2 = 125,000 Birr. 
Example 4.70:  A manufacturer wishes to produce rectangular containers with square bottom and 
top each of which is to have a capacity of 1000 cubic inches.  If the cost of production of each 
container is proportional to its surface area, what should be the dimensions so as to minimize the 
cost of production? 
Solution:  Let x be the side of the base  
and h be the height of the container as seen in Figure 4.15. 
Then the volume is                                                                                         h         h 
  V = x2h = 1000                         

  h = 
2x

V
 =

2

1000

x
   for   x > 0                                          x               x          

                                                                                                          Figure 4.15           
To find the surface area, we have the area of the top and bottom as 2x2 and the area of the four 
sides as  

   4xh = 4x 







2

1000

x
 = 

x

4000
 

Hence the total surface area is given by  

  s(x) = 2x2 + 
x

4000
  for x > 0. 

Since the cost of production is proportional to the surface area, to minimize cost, we find the 
minimum value of s. 

  s(x) = 4x - 
2

4000

x
 = 

2

3 40004

x

x 
 = 0 

     4x3 – 4000 = 0   x3 = 1000 

  x = 10 is the only critical point. 
By the Second Derivative Test, we have  

 s(x) = 4 + 
3

8000

x
   with   s(10) = 4 + 8 = 12 > 0 

Thus x = 10 gives the minimum value s(10) = 600 sq. in. 

The height is h = 
2

1000

x
 =

100

1000
  = 10 in. 

Hence the manufacturer would minimize the cost of production by manufacturing cubes of side 
10 inches. 

Curve Sketching  
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As a second application of the derivative we shall see here sketching the graphs of functions.  
You have been sketching the graphs of polynomial and rational functions starting from your high 
school mathematics.  Here we systematically apply the notions of differential calculus to give 
precise meaning to the asymptotes, intervals of increase and decrease, the turning points and find 
the range of the functions. 
First we shall list the important items that will help us in sketching the graph of a function y = f(x).  

1) Determine the domain of the function f. 
2) Find the intercepts of the function f. 

- x-intercepts are points of the form (x, 0) 
      -    y-intercepts are points of the form (0, y) 

3) Determine the asymptotes, if any, of the function f. 
- A line x = c is a vertical asymptote of the graph of f iff  

   
cx

lim f(x) =   or 
cx

lim f(x) = . 

- A line y = L is a horizontal asymptote of the graph of f iff  

   
x

lim f(x) = L  or 
x

lim f(x) = L. 

-   A line y = ax + b is an oblique (or skew) asymptote of the graph of f   iff  

    
x

lim [f(x) – (ax + b)] = L 

4) Determine the intervals of monotonicity of the function f.  

- f is increasing for all x at which  (x) > 0 

- f is decreasing for all x at which (x) < 0 

5)  Find extreme values of , if any. 
Find the critical points of f and apply the first or second derivative tests to determine 
whether they are relative extreme points or not. 

6) If necessary plot some additional points to help you see the behavior of the function.  

Example 4.71:    Sketch the graph of f(x) = 
2

2




x

x
. 

Solution. 2.1 The domain of f is R\{-2} and the x-intercept is the value of x for which  

 f(x) = 
2

2




x

x
 = 0  x = 2.  Hence x-intercept at (2, 0)  

The y-intercept is the value of y when x = 0, i.e. f(0) = 
20

20




 = -1.  Hence y-intercept at (0, -1).   

Since 
 2

lim
x

 f(x) = 
 2

lim
x 2

2




x

x
 = -, the line x = -2 is a vertical asymptote to the graph of f. 

Also you can check that 
 2

lim
x

f(x) =  

Since 
x

lim f(x) =
x

lim
2

2




x

x
 = 

x
lim

xx

xx

2

2




 = 1, the line y = 1 is a horizontal asymptote for the 

graph of f. 
To find the intervals of monotonicity, let us first find f '(x).  
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By the Quotient Rule for Differentiation,  

   f '(x) = 
2

'')(2(
2
2

)2(

)2)(2()2')(


 



x

xxxx
x
x = 

2
(2

)2(

)2




x

xx
 = 

2
4

)2( x
. 

Hence f '(x) > 0 for every element x in the domain of f. It follows that f is strictly increasing on (-
 , -2) and on (-2,  ).  

 has no critical number and hence no local extrema.  

Additional points: f(-1) = -3, f(1) = - 31  

 
 
 

 
 

 

 

 

 
The graph of f is given in Figure 4.16.                                                    Figure 4.16 

Example 4.72: Sketch the graph of f(x) = x + 
x

1
, for x  0 

Solution:   Since f(x) = x + 
x

1
 = 

x

x 12 
  0 and since x  0 f has no intercepts.  

0
lim
x

f(x) = 
0

lim
x







 

x
x

1
 =  and 

0
lim
x

f(x) = 
0

lim
x







 

x
x

1
 = -  

The line x = 0 (the y-axis) is a vertical asymptote of f. 

x
lim [f(x) – x] = 

x
lim

x

1
 = 0 

Hence the line y = x is an oblique asymptote of the graph of f. 

(x) = 1 - 
2

1

x
 = 

2

2 1

x

x 
 = 

2

)1)(1(

x

xx 
 = 0 gives two critical  points x = 1 and x = -1. 

Using a sign chart to find the intervals of monotonicity: 
                                      -1                 1 
 x – 1   - - - - - - - - - - - - - - - - 0 + + + + + ++ + +  
 x + 1   - - - - - - -  0 + ++ + + + + + + + + + + + + 

 (x)    + + + + +  0 - - - - - - - 0 + + + + + + + + + 

 

(x) > 0 in the interval (-, -1)  (1, ) so that it is strictly increasing in (-, -1)  (1, ). 
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(x) < 0 in the interval (-1, 1) \ {0} so that f is strictly decreasing in (-1, 1) \{0}. 
Using the first derivative test, you can see that f(-1) = -2 is a local maximum and f(1) = 2 is a 
local minimum.  You can also apply the second derivative test to see this.   

Additional points: f(-2) = 25 , f  21  = 
2

5
, f  21  = 25 , f(2) = 

2

5
. 

 
 

 
 
 
 
 
 
 
 
 
 

             
The graph is given in Figure 4.17.                                      Figure 4.17 
 

      Related Rates  
One of the most important applications of the derivative is to solve problems involving rates of 
change.  As was mentioned at the beginning of this section the derivative measures the rate of 
change of a variable quantity (which is the independent variable x) with respect to another 
variable (which is the dependent variable y = f(x)).  Here we shall apply this to solve some 
practical related rates problems.  
Example 4.73:  Suppose a particle P starts from a point 0 and moves along a straight line in the 
positive direction as See in Figure 4.18 
Let s(t) devote the distance traveled from 
0 in t seconds.  If we assume that the speed                                     0                   P 
is constant, then we  can compute the speed as     Figure 4.18       

speed = 
elapsedtime

traveledcetandis
                 

If we are interested to find the average speed of the particle between two times t1 and t2  
(with t1 < t2),  we get  

 Average speed = 
timeinchange

etancdisinchange
  = 

12

12 )()(

tt

tsts




 

In particular if t1 is any time t and t2 is a short time later say t2 = t + h for h > 0, then we have  

x
xxf 1)( ofGraph 
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Approximate speed (at t = t1) = 
tht

tshts


 )()(

 = 
h

tshts )()( 
 

If the speed is not even constant, by taking h smaller and smaller we can approximate the speed of 
the particle at time t, to get what is called the (instantaneous) velocity of the particle as  

  v(t) = 
0

lim
h h

tshts )()( 
  

Thus, if s(t) denotes the position function of the particle its velocity is given by  

 v(t) = s(t) = 
dt

ds
  - rate of change of position.  

Similarly, the acceleration of the particle can be obtained by  

  a(t) = v(t) = 
dt

dv
 - rate of change of velocity  

                  = 
0

lim
h h

tvhtv )()( 
 = s(t) = 

2

2

dt

sd
 

For instance if s(t) = t3 – 6t2 + 20 for 0  t  6,  

then v(t) = s(t) = 3t2 – 12t 

and a(t) = v(t) = s(t) = 6t – 12 
    In general, if any quantity q is a function of time t, then the rate of change of the quantity with 

respect to time is given by the derivative q(t). 
 
Example 4.74 :  Water is flowing into a vertical cylindrical tank of radius 2 feet at the rate of 8 
ft3/min.  How fast is the water level rising after t minutes?  
                                                                                                                              h(t)                
 
 
 
Solution:    Let v(t) denote the volume of water in the tank  after t minutes and let h(t) denote the 
height of water in the tank after t minutes.  See Figure 4.19. 
Since the rate at which water is flowing into the tank is 8 ft3/min. the volume of water in the tank 
after t minutes is  
   v(t) = 8t 
On the other hand since the base of the cylinder is 2 feet and height in h minutes is h(t), we have 
the volume  

   v(t) = r2h(t) = 4h(t)  

Thus 4h(t) = 8t     h(t) = t

2

 

The rate at which the water level is rising in then  

  h(t) = 

2

 ft|min, a constant!  (why?) 

       Figure 4.19 
  v(t)       
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Example 4.75:  Two automobiles start from a point A at the same time.  One travels west at 60 
km/hr and the other travels north at 35 km/hr.  How fast is the distance between them increasing 3 
hrs later? 
Solution:  Let s(t) denote the distance  
between the two cars after t hrs.  In                                                  s(t) 
t hrs the car due north travels 35t  kms                                                              35t   
and the car due west travels 60t kms         A  
as seen in Figure 4.20                                                            60t                          

Figure 4.20. 
Hence the distance s(t) between the two cars in t hrs is  

   s(t) = 22 )60()35( tt   

The rate of change of the distance between the cars is  

   s(t) = 
22

22

)60()35(2

)60(2)35(2

tt

tt




       … How ? 

Hence after 3 hrs the distance between the two cars is increasing at the rate of  

   s(3) = 
22

22

)60()35(3

)60(3)35(3




 = 5 193  km/hr 

Exercise 4.3 

1. Find relative extrema and the intervals in which the given function is increasing or 
decreasing  
a) f(x) = 5 – 4x – x2  b) g(x) = x3 + x2 – x – 4 

c) f(x) = 
12 x

x
   d) g(x) = x2 + 

2

1

x
 

2. Use the First or Second Derivative Test to determine relative extreme values of the function  

a) f(x) = 5x2 – 2x + 1  b) g(x) = 
4

2x
+ 

x

4
 

c) f(x) = x4 + x
2

1
  d) g(x) = 

1

1
2 x

 

e) f(x) = 
x

x

sin1

cos


  f) g(x) = (x2 + 2)6 

3. Sketch the graph of the following functions 

a) f(x) =  (x2 – 1)2 b) g(x) = 
x

e x

       c)  g(x) = 
1

43
2

23




x

xx
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4.  A menu of total area of 100 sq. in. is printed with 2 in. margins at the top and bottom and 
1in. margins at the sides.  For what dimensions of the menu is the printed area largest?  

5. A rectangle of perimeter p is rotated about one of its sides so as to from a cylinder.  Of all 
such possible rectangles, which generated a cylinder of maximum volume? 

6. The volume of a spherical balloon is increasing at a constant rate of 8 cubic feet per minute.  
How fast is the radius of the sphere increasing when the radius is exactly 10 feet?   

7. At midnight ship B was 90 miles due south of ship A.  Ship A sailed east at 15 m/hr and 
ship B sailed north at 20 m/hr.  At what time were they closest to each other? 

     

4.4. Integrals and their applications 

In this section we shall introduce the second major part of calculus known as integral calculus.  
Just like subtraction is the inverse process of addition, integration is the inverse process of taking 
the derivative of a function.  Historically, integral calculus was developed in solving problems 
connected with finding areas of regions with curved boundaries. 

Section Objectives  

At the end of this section you should be able to:  

 define an anti-derivative of a continuous function. 

 state properties of anti-derivatives. 

 find indefinite integrals of some elementary functions. 

 evaluate the integrals of functions using the techniques of integration. 

 solve integrals involving trigonometric functions. 

 find the definite integral of continuous functions. 

 apply the concepts of definite integrals to find areas of regions bounded by continuous 
functions. 
 

    The Indefinite Integral 
  
As is mentioned above the process of integration is the inverse process of differentiation and 
hence is sometimes called taking anti-derivatives.   
 
Definition 4.13:   A function F(x) is called an anti-derivative of a continuous function f(x) if and 

only if  F(x) = f(x) for every x in the domain of f. 
Example 4.76:  Let f(x) = 3x2 + 4x.  Then the function F1(x) = x3 + 2x2 is an anti-derivative of 

f(x), since F(x) = 
dx

d
(x3 + 2x2) = 3x2 + 4x = f(x). 

Note that F1 is not the only anti-derivative of f(x).  You can also check that F2(x) = x3 + 2x2  + 5 
and F3(x) = x3 + 2x2 – 7 are also anti-derivatives of f.   
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In fact, if c is any real number, then F(x) = x3 + 2x2 + c is an anti-derivative of f(x) = 3x2 + 4x 

since F(x) = 
dx

d
 (x3 + 2x2 + c) = 3x2 + 4x = f(x)  

     
Theorem 4.19:   If F(x) is an anti-derivative of f(x), then F(x) + c, where c is an arbitrary 
constant, is also an anti-derivative of f(x). 
 

Notation and terminologies:   Given a function f, the symbol  dxxf )(  stands for any (and 

hence all) anti-derivatives of f. i.e.  if F(x) is an anti-derivative of f(x), we write  dxxf )(  = F(x) 

+ c,  for any constant c. The symbol  is called the integral sign. The function f(x) is called the 

integrand, x is called the variable of integration, and c is called a constant of integration.  

 dxxf )(  is also called the indefinite integral of f with respect to x. 

 
Examples 4.77:  We have   

a)  3x2dx = x3 + c  d)  sinxdx = -cosx + c; g)  cosx dx = sinx + c 

b)  exdx = ex + c  e)  x

1
dx = n|x| + c 

c)  sec2xdx = tanx + c  f)  cscx cotxdx = -cscx + c 

 

 Properties of the Indefinite Integral  

 
Suppose F and G are antiderivatives of f and g, respectively, and k is a constant. Then  

1)  kf(x)dx = k  f(x)dx = kF(x) + c. 

2)  (f(x) + g(x))dx =  f(x)dx +  g(x)dx = F(x) + G(x) + c. 

3)  (f(x) – g(x))dx =  f(x)dx -  g(x)dx = F(x) – G(x) + c. 

 
Examples 4.78:   

1)   4 cosxdx = 4  cosxdx = 4sinx + c 

2)  





 

x
e x 1

dx =  exdx - dx
x
1

= ex – n|x| + c 

3) If f(x) = xr, for any rational r  -1, then  

  f(x)dx =  xrdx = c
r

x r






1

1

   (verify!) 
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 Thus,  x5dx = c
x


6

6

 and 


2
3

x dx = c
x






2
1

2
1

 = c
x


 2
. 

4) dxx
x 






  2

3
sec2

1
 =   dxx 3  + 2  xdx2sec  

           = 
22

1

x
  + 2tanx + c. 

5) If P(x) = anx
n + an-1x

n-1 + … + a2x
2 + a1x + a0 is a polynomial, then its anti-derivative is 

given by  

P(x) =  dxxP )(  = 
1

1





n

xa n
n  + 

n

xa n
n 1  + …+ 

3

3
2 xa

 +
2

2
1xa

 + a0x 

Thus,  (3x4 + 2 x3 – 5x + 2)dx = 3  x4dx + 2  x3dx - 5  xdx +  2dx 

  = 5

5

3
x  + 4

4

2
x  - 2

2

5
x + 2x + c 

 

 Some Techniques of Integration 

  
In the previous section we were trying to find anti-derivatives of some functions whose 
derivatives can easily be found from the previous unit on differentiation.  But there are various 
functions such as  

 f(x) = (x + 3)5 , g(x) = xe-x    and      h(x) = 
)4(

2
2 xx

x
 

whose anti-derivatives are not readily found.  In this section we shall see some techniques to find 
the integrals of such functions. 
 
a) Integration by Substitution 

  
This technique is basically developed by reversing the Chain Rule.  It is very helpful in finding 
the integrals of functions that appear as the composite of two functions. 
Suppose we want to find the indefinite integral   

    dxx 5)3(  

we may expand (x + 3)5 and then integrate term by term using the formula 

 dxx r  = cx
r

r 


1

1

1
. 

But this would obviously be very tedious and cumbersome.  On the other hand if we replace or 
substitute u for x + 3, we get  

 (x + 3)5 = u5 and 
dx

du
 = 

dx

d
(x + 3) = 1    dx = du. 
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Thus,   dxx
5

3   = duu 5  = 
6

1
u6 + c. Hence,   dxx

5
3   = 

6

1
(x + 3)6 + c, for some constant c. 

 

Theorem 4.20:   If g(x) is continuous x[a, b] and f is continuous at g(x), then  

  f(g(x))g(x)dx =  f(u)du                -    Integration by Substitution   

 

Example 4.79:  Evaluate  2x(x2 – 5)6dx 

Solution:   Let u = x2 – 5.  Then, 
dx

du
 = 2x  which implies that du = 2xdx. Thus,  

  2x(x2 – 5)6dx =  u6du = 

7

1
u7 + c and hence  2x(x2 – 5)6dx = 

7

1
(x2 – 5)7 + c. 

Example 4.80:  Integrate dx
x

x


 21
 

Solution:  Let u = 1 + x2.  Then, 
dx

du
 = 2x which implies that xdx = du

2

1
. Therefore, 

 dx
x

x


 21
 = 

2

1 du

u  = duu


2
1

2

1
= 2

1
.2.

2

1
u  + c = cu   = 21 x  + c. 

Example 4.81:  Integrate  xdx4sin  

Solution:   Let u = 4x.  Then 
dx

du
 = 4    dx = 

4

1
du. Thus  xdx4sin  = 

4

1
 udusin = -

4

1
 cosu +c  

= -
4

1
 cos4x+ c. 

In general  axdxsin  = -
a

1
cosax + c,    and  bxdxcos  = 

b

1
sinbx + c 

These two formulas can be used to find integrals involving trigonometric functions together with 
trigonometric identities. 

Example 4.82:   Integrate  xdxx 22 cossin  

Solution: From trigonometric identities we have  
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 sin2x = 
2

2cos1 x
  and   cos2x = 

2

2cos1 x
 

Thus  xdxx 22 cossin  = dxxx )2cos1(
2

1
)2cos1(

2

1
  

= dxx  )2cos1(
4

1 2  = dxx 



  )4cos1(

2

1
1

4

1
            

=   xdxdx 4cos
8

1

8

1
 = .4sin

32

1

8

1
cxx   

Example 4.83:   Find  xdxtan  

Solution:  xdxtan  = dx
x

x
 cos

sin
. Let u = cos x.  Then 

dx

du
 = -sinx  sinx dx = -du. 

Hence,  xdxtan  = 


u

du
 = - du

u
1

 = -n|u| + c =  -n|cosx| + c. 

You can similarly find  xdxcot . 

 

Example 4.84:   Integrate   dxe x2  

Solution:  Let u = - 2x.  Then 
dx

du
 = -2  dx = -

2

1
du.  

So that   dxe x2  =  dueu

2

1
 = 

2

1
eu + c = 

2

1
e-2x + c 

In general since 
dx

d
ef(x) = (x) ef(x), we have   dxexf xf )()(  = )( xfe  + c. 

Thus  dxxe x2

 = 
2

1 2xe + c and  dxxex
323  = 

2xe + c. 

 
b) Integration by Parts  

 
The method of integration by parts is basically developed from the Product Rule for 
differentiation.  If f and g are differentiable functions, we have  

 (f(x)g(x)) = (x) g(x) + g(x) (x) 
Integrating on both sides with respect to x, we get  

 f(x) g(x) =   dxxgxf )()(  +   dxxfxg )()(  

If one of the integrals on the right can be easily evaluated, we can find the other integral using the 
following theorem  
 

Theorem 4.21:   If f and g are differentiable functions, then  

    dxxgxf )()(  = f(x)g(x) -    dxxfxg )()(      - Integration by parts  
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Example 4.85:   Find  dxxex  

Solution:    Let f(x) = x and g(x) = ex. Then (x) = 1 and g(x) = ex. Therefore, 

  dxxex  = xex -  dxex .1.  = xex – ex + c, for some constant c. 

Integration by parts can be easily remembered using the following  substitutions. 
 Let  u = f(x)  and   v = g(x) 

 Then  du = (x)dx  and  dv = g(x)dx 

So that   dxxgxf )()(  = udv = f(x)g(x) -   dxxfxg )()(  = uv-  vdu  

Thus,   vduuvudv            - Integration by Parts. 

 

Example 4.86:  Find  nxdxx  

Solution:   Let      u = nx, dv = xdx. Then, du = 
x

1
dx,    v = 

2

2x
. 

Thus  nxdxx  = 
2

2x
nx -  dx

x

x 1

2

2

 = 
2

2x
nx - dx

x
 2

=
2

2x
nx -

4

2x
+ c. 

 Example 4.87:  Find  nxdx  

Solution:   Let      u = nx and dv = dx. Then, du = 
x

1
dx    and v = x 

Hence  nxdx  = xnx -  dx
x

x
1

. = x nx - dx  = xnx – x + c = x(nx – 1) + c. 

Example 4.88:   Find the integral dxex x2

  

Solution:    Let u = x2 and dv = ex dx. Then, du = 2xdx, v = ex and dxex x2

  = x2ex - dxex x2 . 

But we have seen above that dxex x  = xe2 - ex + c. Hence, 

 dxex x2

  = x2ex – 2(xex – ex + c) = ex(x2 – 2x + 1) + c1 where c1 = -2c is a constant. 

 
In some cases we may have to apply integration by parts more than once to arrive at the required 
result as in the following example. 
  

Example 4.89:  Find dxxex cos   

Solution:  Let  u = ex      and dv = cosxdx. Then, du = exdx and v = sinx. Thus,  

dxxex cos  = exsinx - dxxex sin .  

To evaluate the integral on the right, we again use integration by parts. 
Let   u   = ex      and dv = sinx dx. Then, du = exdx and v = -cosx. 



203 
 

Thus, dxxex sin  = -excosx + dxxex cos  which implies 2 dxxex cos  = exsinx + excosx + c. 

Therefore, dxxex cos  = xe
2

1
(sinx + cosx) + c. 

c) Integration by the Method of Partial Fractions  
 

The method of Partial Fractions is used for rational functions  

  f(x) = 
)(

)(

xq

xp
  

where degree of p(x) is less than degree of q(x).  (If not we can apply long division to write f(x) 
as a sum of a polynomial and a rational function with the desired property.) The first step in this 
method is to factorize the denominator q(x) into linear factors, if possible.  (The case where we 
have irreducible quadratic factors of q(x) will not be treated here.)  Now with each linear factor 
(ax + b)m (of multiplicity m) we associate constants A1, A2, …,Am and write 

2
21

)( bax

A

bax

A





+…with the Ai’s to be determined. Then, the rational function f(x) is then 

expressed as a sum of simple rational functions and can be easily integrated. 
 

Example 4.90:  Find dx
x  4

1
2

 

Solution:  By factorizing x2 – 4 as (x – 2) (x + 2), we have  

 
4

1
2 x

 = 
)2)(2(

1

 xx
 = 

2x

A
+

2x

B
 = 

)2)(2(

)2()2(




xx

xBxA
 

          
Since the denominators are equal, we equate the numerators as  A(x+2) + B(x - 2) = 1. 
From equality of polynomials, we get 

 







122

0

BA

BA
  A = 41  and  B = 

4

1
 

Hence, dx
x  4

1
2

 = dx
xx 












 2

41

2

41
  = 

4

1
  2x

dx
-

4

1
  2x

dx
= 

4

1
n|x – 2| -

4

1
n |x+2| + c. 

Example 4.91:  Find dx
xxx

xx
 


2

13
23

2

 

Solution:  The denominator x3 – x2 – 2x = x(x2 – x – 2) = x(x + 1) (x – 2) has three roots 0, -1 and 
2. 

xxx

xx

2

13
23

2




 = 
)2)(1(

13 2




xxx

xx
 = 

x

A
+

1x

B
+

2x

C
 

            = 
)2)(1(

)1()2()2)(1(




xxx

xCxxBxxxA
 

 A(x+1) (x - 2) + B x(x - 2) + Cx(x+1) = 3x2 + x – 1 
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This equation is true for all xR.  In particular, 

when x = 0,  A(1)(-2) = -1   A = 21  

when x = -1, B(-1)(-3) = 1   B = 31  

when x = 2, C(2)(3) = 13   C = 613  

Hence, dx
xxx

xx
 


2

13
23

2

 = 
2

1
 x

dx
 + 

3

1
 1x

dx
 + 

6

13
  2x

dx
=

2

1
n|x| + 

3

1
n|x + 1| + 

6

13
n|x-2|+c. 

 

 The Definite Integral 
 

For a very long time, mathematicians have struggled with the problem of finding areas of plane 
regions.  Until the invention of the integral calculus, however, the regions considered were mostly 
those regions bounded by straight lines, called polygons, with a few exceptions such as the circle 
and the ellipse.  The Greek mathematicians found the area of a polygon by first finding the area of 
a rectangle, then finding the area a parallelogram, and then finding the area of a triangle.  The area 
of a polygon can be used to approximate the area of a region bounded by curved boundaries.  For 
instance, the area of a circle can be found by drawing a sequence of inscribed polygons  

P4, P8, P16, …,Pn, and then taking limit as n  . 
 
To develop the idea for more general regions, consider the region bounded by the graphs of 

y = 2x2 + 1,     x = 0,     x = 6    and     x-axis. 
To find the area of the region, let us identify the region S by drawing its boundaries, namely the 
graphs of     y = f(x) = 2x2 + 1, x = 0, x = 6   and the x-axis as shown in Figure 4.21. 
 
 

 
 
 
 
 
 
 
 
 
 
                            Figure 4.21 

Unfortunately, since f(x) = 2x2 + 1 is a curve that is not a line segment, we cannot find the area of 
the region by the elementary methods. So, it is necessary to develop a stronger technique that also 
generalizes the elementary method and enables us to find the area of such regions. 
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Let A(S) denote the area of the region S. It is not difficult to give lower and upper bounds of 
A(S). For instance, we consider the rectangle r that is enclosed by the boundaries of S and the 
rectangle R that encloses S, as shown in Figure 4.22. 
 

 
 
 
 
 
 
 
 
 
 
                                     Figure 4.22 
 
      Then   A(r) = 6   and   A(R) = 673 = 438. Hence 6   A(S)   438, which gives a wide range 
of bounds of A(S). 

Better bounds of A(S) can be obtained if we consider the finer rectangles r1 , r2 , r3 , r4 , 

r5  and r6  that are enclosed by the boundaries of S and R1, R2, R3, R4, R5 and R6 that enclose S as 

shown in Figure 4.23. 
 
 
 
 
 
 
 
 
                                  Figure 4.23 

 
 
 
                                              Figure 4.23 

Evidently, each of the rectangles has base 1 unit but varying heights. It follows that 
                A( r1)+A( r2 ) + … + A( r6 )A(S)A(R1) + A(R2) + … + A(R6) 

i.e.,  


6

1
)(A r

i
i     A(S)     



6

1

)(A
i

Ri which gives   116       A(S)       188. 
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To give a formal definition of the subdivisions, for any positive integer n, divide [a, b] into 
subintervals by introducing points of subdivision  x0, x1, …xn  
Definition 4.14:  A partition of [a, b] is a finite set P of points x0, x1, …, xn such that  
a = x0 < x1 < x2 < … < xn = b.  We describe P by writing P = { x0, x1, …xn}    
By definition, any partition of [a, b] must contain a and b. 
The length of any subinterval [xi-1, xi] of a partition P is defined and given by  

  xi = xi – xi-1 
In particular, when the lengths of each subintervals are equal, it is called a regular partition.  
 In this section we shall consider only regular partitions, so that the length of   each subinterval is  

    xi = xi – xi-1 = 
n

ab 
 

Having chosen a partition P of [a, b], we inscribe and circumscribe rectangles on the region R 
using the division points of P as seen in Figure 7.3(a) and (b).  Since f is continuous on [a, b], by 
the Maximum-Minimum Theorem, for each i between 1 and n, there is a minimum value mi and a 
maximum value Mi of f on the subinterval [xi-1, xi].  If ri and Ri denote the inscribed and 

circumscribed rectangles on [xi-1,xi], respectively, then the area of ri is A(ri) = mixi and the area 

of Ri is A(Ri) = Mixi, since the base of both ri and Ri is xi = xi - xi-1.  From our observation in 
Figure 7.3 (a) and (b) we see that the area of the region R is between the sum of the inscribed  
rectangles and the sum of the circumscribed rectangles. 
Definition 4.15:  Let f be continuous on [a, b] and P be any partition of [a, b].   

The sum     Lf(P) = m1x1 + m2x2 + …+ mnxn 
is called the lower sum of f associated with P and the sum  

  Uf(P) = M1x1 + M2x2 + … + Mnxn 
is called the upper sum of f associated with P. 
   From our construction we see that if P is any partition of [a, b], then the area of R should be 

between Lf(P) and Uf(P) i.e. 
              

Example 4.92:   Let f(x) = x2 for o  x  2 and let P = 








2,
2

3
,1,

2

1
,0 be a partition of [0, 2]. 

Then the subdivision of [0, 2] associated with P are 





2

1
,0 , 





1,
2

1
, 





2

3
,1 , 





2,
2

3
.  Since x2 is an 

increasing function on [0, 2], the minimum value of f on each subinterval is at the left end point 
and the maximum value of f at the right end point.  Thus 

 m1 = f(0) = 0,         m2 = f
4

1

2

1







 ,      m3 = f(1) = 1,           m4 = f

4

9

2

3







  

and M1 = f
4

1

2

1







 ,      M2 = f(1) = 1,          M3 = f

4

9

2

3







 ,       M4 = f(2) = 4 

The base of each subinterval is xi = 
4

02 
 = 

2

1
.  Thus the lower sum of f associated with P is  

Lf(P)  Area (R)  Uf(P) 
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  Lf(P) = 0. 
2

1
 +

4

1
 . 

2

1
+ 1.

2

1
 + 

4

9
.
2

1
 = 

4

7
 

and the upper sum of f associated with P is  

  Uf(P) = 
4

1
.
2

1
 + 1.

2

1
 + 

4

9
.
2

1
 + 4.

2

1
 = 

4

15
 

Therefore the area of the region R below the graph of f(x) = x2 above the x-axis on [0, 2] is 

between 
4

7
 and 

4

15
, i.e. 

4

7
  Area(R)  

4

15
.  

Definition 4.16:  Let f be continuous on [a, b].  The definite integral of f from a to b is the 

unique number I satisfying Lf(P)  I  Uf(P) for every partition P of [a, b].   
This integral is denoted by  

  I = 
b

a

dxxf )(      

The numbers a and b are called the lower and upper limits of integration, respectively.  
 Note that as the number of subdivisions of an interval [a, b] increases, the minimum and the 
maximum values of f on [xi-1, xi] are close to each other.  For each i from 1 to n if we take an 
arbitrary number ti in [xi-1, xi], then we get the sum  

  



n

i
ii xtf

1

)( = f(t1)x1 + f(t2)x2 + …+ f(tn)xn 

This sum is called a Riemann sum or an Integral sum.  

Even though it is sometimes possible to calculate 
b

a

dxxf )( by finding formulas for lower and 

upper sum we are to evaluate it here by the use of the Fundamental Theorem of Calculus. 
For the moment we can conclude that if f is continuous and nonnegative on [a, b], then the area of 
the region R between the graph of f and the x-axis on [a, b] is given by  

   Area(R) = 
b

a

dxxf )( . 

Remark:   The definite integral has the following properties. 
       If f and g are integrable over [a, b] and k is a constant, then  

    a) 
b

a

dxxkf )(  = k 
b

a

dxxf )(  

 b)  
b

a

dxxgxf ))()(( = 
b

a

dxxf )(   
b

a

dxxg )(  

 c) If f(x)  0, for a  x  b, then 
b

a

dxxf )(   0 and   
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  if f(x)  0, for a  x  b, then 
b

a

dxxf )(   0. 

 d) If m  f(x)  M for all x  [a, b], then  

                  m(b – a)  
b

a

dxxf )(   M(b – a) 

e) If c is any number in (a, b), then  

  
b

a

dxxf )(  = 
c

a

dxxf )(  + 
b

c

dxxf )(    - Additive Property  

 f) 
a

a

dxxf )(  = 0  for any number a.  

 g) 
a

b

dxxf )(  = - 
b

a

dxxf )( . 

To develop a general method for evaluating 
b

a

dxxf )(  without computing lower and upper sums 

we shall state the most important theorem in calculus: The Fundamental Theorem of Calculus.  

To this end let f(t) be continuous on [a, b].  Then f is integrable on [a, b] and for any x[a, b] the 

definite integral 
x

a

dtxf )(  exists.  Define a function F on [a, b] as F(x) =  
x

a

dttf )(  

In effect the Fundamental Theorem of Calculus states that the function F(x) is differentiable with 
derivative f(x) thereby eliminating the integral by the derivative.  It also shows us how to evaluate 
the definite integral. 

 

 

 

 

Remarks:  a)  From (ii) to evaluate 
b

a

dxxf )(  all we have to do is to find an anti-derivative of F 

of f and find the difference of its values at a and at b.  This is usually denoted by  

 baxF )(  or 
a

b
xF )(  to mean F(b) – F(a). 

Theorem 4.22:  (Fundamental Theorem of Calculus)  

Let f(t) be continuous on [a, b] and for each x [a, b] let  

  F(x) = 
x

a

dttf )(   

Then (i)    F(x) is a differentiable function with F(x) = f(x)  

(ii) If F is any anti-derivative of f on [a, b], then 
b

a

dttf )(  = F(b) – F(a). 
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b) If F is an anti-derivative of f, then F(x) + c, for any constant c is also an anti-derivative of 

f.  But since  bacxF )(  = (F(b) + c) – (F(a) + c) = F(b) – F(a) = b
axF )(  

          the constant c does not play any role in evaluating the definite integral.  Thus we can 
always take c = 0. 

Example 4.93:   Let f(x) = x2 for 0  x  2.  Then F(x) = 3

3

1
x  is an anti-derivative of f, so that by 

the Fundamental Theorem of Calculus. 

   
2

0

2dxx  = 3

3

1
x

0

2
 = F(2) – F(0) = 32

3

1
 - 30.

3

1
 = 0

3

8
  = 

3

8
 

From our previous discussion, the area of the region R under the graph of f(x) = x2 on [0, 2] above 

the x-axis is thus   
2

0

2dxx  = 38  sq. units. 

Example 4.94:   Evaluate each of the following definite integrals  

a) dxx
4

1

3      b) dxx


0

sin  

c) 



2

0

)cos( dxxx    d)  
1

0

3 )25( dxexx x  

Solution:  a)   Since  F(x) = 3.
3

2
. 23x  = 2x x  is an anti-derivative of f(x) = 3 x , we have  

 
4

0

3 dxx  = F(4) – F(1) = 2(4) 4  - 2(1) 1  = 16-2 = 14 

b) An anti-derivative of sinx is –cosx.  Thus 

 


0

sin xdx  = -cosx
0


 = -cos - (-cos 0) = -(-1) + 1 = 2. 

c)  
2

0

)cos(


dxxx  = 
2

0

2

sin
2











 x

x
= 











1

8

2

 - (0 + 0) = 1
8

2




. 

d) dxexx x )25(
1

0

3   = 
1

0

24

4
5





  xexx = 






  e1

4

5
 - (0 + 0 – 1) = e

4

13
 

Remark:  For functions that are given by more than one formula we evaluate the definite integral 
using the additive property. 

Example 4.95: Evaluate dxx



1

2

1  
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Solution:  By definition |x + 1| = 







1),1(

1,1

xforx

xforx
 

                                                                                       y 
Then by Additive Property, we have                                   

dxx



1

2

1  = dxx





1

2

)1(  + dxx



1

1

)1(  

= -
1

2

2

2












 x

x
 +  

1

1

2

2









 x

x
                                                                               x 

           Figure  4.23 

= - 














  )22(1

2

1
 + 














 






  1

2

1
1

2

1
= 2

2

1
  = 25  

            
From the method of Integration by Substitution we have  

    dxxgxgf )())((  =  duuf )(  where u = g(x) 

If we are to evaluate this integral between a and b, we have,  
when x = a, u = g(a) and when x = b, u = g(b).  Thus it follows  
   
        - Change of Variable. 
 
 

Example 4.96:  Evaluate dxxx 
3

2

2 4  

Solution: We have two possibilities to evaluate such a definite integral.  One way is to find an 

anti-derivative of 42 xx  and evaluate it between 2 and 3 by the Fundamental Theorem of 

Calculus.  The other is to use the change of variable formula and change the limits of integration 
before integrating.   
To this end, let u = g(x) = x2 – 4.  Then du = 2xdx. 
When x = 2, u = g(2) = 0 and when x = 3, u = g(3) = 5 

Thus dxxx 
3

2

2 4  = 
2

3

0

du
u  = 

5

0

21

2

1
duu  

 = 
5

03

2
.

2

1
uu  = 5,5.

3

1
 - 0 = 

3

55
. 

 Application of the Definite Integral:  Area 
The definite integral has several applications such as finding areas of regions, arc length 
of curves, surface areas and volumes of solids of revolution.  In this section we shall see 
how to find areas of plane regions with curved boundaries using the definite integrals. 

 
b

a

bg

ag

duufdxxgxgf
)(

)(

)()())((  
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In the previous section we have seen that if f(x)  0 for all x [a, b] and if f is continuous on [a, 

b], then 
b

a

dxxf )(  gives the area of the region R below the graph of f, above the x-axis, between 

the lines x = a and x = b. For instance, if f(x) = x2 for 0  x  2, then the area of R as given in is 

given by A(R) = 38
0

2

3

2

0

3
2 

x
dxx  sq. units. 

- If f(x)  0 on [a, b], then taking g(x) = -f(x)  0 for a  x  b, the area of the region R below the 

x-axis, above the graph of f on [a, b] is given by A(R) = 
b

a

dxxg )(  = 
b

a

dxxf )(  = - 
b

a

dxxf )( . 

For instance, if f(x) = 2x for -2  x  0, then the area of the region R below the x-axis, above the 
graph of f on [-2, 0] is given by  

 A(R) = - 


0

2

)( dxxf  = - 


0

2

2xdx  = -x2
2

0


 = -[0 - 4] = 4 sq. units. 

Now let f and g be continuous on [a, b], and assume that f(x)  g(x) for a  x  b.  Then the area 
of the region R below the graph of f, above the graph of g, and between the lines x = a and x = b 
is given by  

  A(R) =  dxxgxf
b

a
  )()(          

 

Example 4.97: Find the area of the region bounded by f(x) = x2 , g(x) = -x and line x = 9. 

Solution. Sketching the graphs of y = f(x), y = g(x) and x = 9, the region R can be identified as 
shown in Figure 4.24. 

 
 
 
 
 
 
 
 
 
 
 
 
                            Figure 4.24 
It follows that 

y 

x 9 

y = 2 x  

R 

y = -x 
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       A(R) =     
9

0

9

0
2)()( dxxxdxxgxf 2

3

3
4 x  + 5.76|

9

02

2
x . 

 

Exercise 4.4 

1. Evaluate the following indefinite integrals  

a)  (x3 + 5)dx   d)     (4 – x + 3x2 – 2x5)dx 

b)  2x-8dx    e)     (cosx – 4ex)dx  

c)  3 sinxdx   f)    dx
x

xx



2

3 4
 

2. Find the following integrals by substitution  

a)   3x

dx
    c)     dxxx cossin 2  

b) dxe x 3      d)    dx
x

xn


4
 

3. Find the following integrals by the method of Integration by Parts. 

a)  dxxx cos    c) dx
x

nx
 2


 

b) dxx x  3)1(     d)  dxxx sin2       

 
4. Integrate the following by the method of Partial Fractions 

a)   )43)(2( xx

dx
   c)   )3)(2)(1( xxx

dx
 

b)   62 xx

x
    d) 

 
dx

x

x
  22

2
 

5. Find the area of the region R between the graph of f and the x-axis on the given interval  
a) f(x) = x2 + 1 ,   on [1, 3] 

b) f(x) = 2 + cosx,   on  23,0   

c) f(x) = 
x

1
,    on [1, 4] 

d) f(x) = |x| - 1,   on [-1, 2] 
6. Find the area of the region between the graphs of the following functions. 

. a) f(x) = x2 and g(x) = 2 – x 

 b) f(x) = ex, x = -1, x = 3 and the x-axis  

 c) f(x) = x2 – 4 and g(x) = 4 – x2 
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